ENID

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018 (Fourth Semester)

Branch -MATHEMATICS

FLUID DYNAMICS

		Thom D I MANIES	
T	ime:	Three Hours Maximum: 75 Marks Answer ALL questions	
		ALL questions carry EQUAL marks $(5 \times 15 = 75)$	
1	a	Give an account of (i) Pressure (ii) Viscosity of the fluid properties. OR	(15)
	b	Derive the fluid motion by Eulerian method.	(10)
r	c	Describe the vorticity in polar coordinate system.	(5)
2	а	Verify the equality of shearing stresses $\sigma_{yz} = \sigma_{zy}, \sigma_{xz} = \sigma_{zx}$ and	
		$\sigma_{xy} = \sigma_{yx}$.	(7)
	b	Derive the transformation formulae for the rates of the strain. OR	(8)
	c	State and prove Navier – Stokes equation.	(12)
v	d	Derive the viscous incompressible fluid of energy equation.	(3).
3	a	State and prove Stokes theorem of circulation.	(8)
	b	Calculate the circulation Γ of a circulatory flow ($v_r = v_z = 0$) with the constant vorticity ($\Omega_z = \text{constant}$) from both the circulation and Stoke's theorem.	(7)
		OR	
	С	State and prove the Momentum theorem.	(8)
	d	Show that the velocity potential $\phi = \frac{a}{2}(x^2 + y^2 - 2z^2)$ satisfies the	
		Laplace equation and represents the flow against a fixed place wall.	(7)
4	a	State and prove the Reynolds law of dynamically similarity.	(8)
	b	Solve the shearing stress of viscous fluid which flow between two coaxial cylinders.	(7)
	c	Derive the velocity distribution of the Hagen – Poiseuille flow through a pipe. Also solve the average and maximum velocity distribution.	(15)
5	a	Solve the Prandtl boundary layer equation along a flat plate in account of the Blasius solution.	(15)
	b	Find the solution of two dimensional boundary layer on a surface with pressure gradient.	(8)
	c	Derive the momentum integral equation of the boundary layer.	(7)

777