PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION JUNE 2018

(Fourth Semester)

Branch **MATHEMATICS**

FLUID DYNAMICS

1	ime: Three Flours	Maximum: 75 Marks	num: 75 Marks	
	Answer ALL questions ALL questions carry EQUAL mark	$(5 \times 15 = 7)$	5)	
1	a Give an account of (i) Density, weight and Specific (ii) Specific heat fluid proper OR)	
	b Derive the fluid motion by Lagrangian method.	(8)		
	c Describe the vorticity in orthogonal curvilinear	coordinates. (7)		
2	a Verify the following invariants for two dimensiona	l stress components		
	$(G_{x}{x}-a_{y}.y')^{2}+4a^{y}=(a_{xx}+a_{vv})^{2}+4a_{xy}$	(5)		
	b Derive the relationship between stress and Strain. OR	(10)		
	c Derive the energy equation at conservation of energy	gy. (15)		
3	a State and prove Kelvin's theorem at constancy of circ	culation. (8)		
	b Give an examples of irrotational and rotational flow OR	vs. (7)		
	c Derive the integration of equation of motion in Bernoulli's equation. (7)			
	d Derive the Laplace equation of velocity potential in coordinates.	n spherical (8))	
4	Derive the velocity distribution of Couette flow of two parallel plates. Also solve the following.			
	(i) Average and maximum velocity distribution(ii) Shearing Stress of Couette flow of tw o parallOR	el plates (15)		
	b State and prove Reynolds law of dynamical similar	ity. (7)		
	c Solve the shearing stress of flow ⁷ between two concylinders.	~	8)	
5	a State the properties of Navier - Stokes equation.	(7)		
	b Derive the momentum integral equation of the bound momentum law.	ndary layer by	3)	
OR c Solve the Prandtl boundary layer equation along a flat plate in acco				
	of the Blasius solution.	(15))	

Z-Z-Z END