PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018 (Third Semester)

Branch – MATHEMATICS

CORE ELECTIVE-I STOCHASTIC DIFFERENTIAL EQUATION

Time: Three Hours

Maximum: 75 Marks Answer ALL questions

ALL questions carry EQUAL marks (5

 $(5 \times 15 = 75)$

1 a Prove that B_t is a Gaussian process.

b Define $\Delta B_t = B_{tk+s} - B_{t_k}$ and put $Y(t, w) = \sum_{t_k st} (\Delta B_k(w))^2$, show that $E\left[\left(\sum (\Delta B_k)^2 - t\right)^2\right] = 2\sum_{t_k st} (\Delta t_k)^2$ and deduce that $Y(t, .) \to t$ in $L^2(P)$ as $\Delta t_k \to \infty$.

- c Define $Y: \Omega \to R$ by Y(1) = 0, Y(2) = Y(3) = Y(4) = Y(5) = 1. Find the σ -algebra \mathcal{H}_v generated by Y.
- 2 a State and proved the Ito isometry.

b Let $f \in \gamma(0,T)$. Then there exists a t-continuous version of $\int_{0}^{t} f(s,w) dB_{s}(w); 0 \le \epsilon \le T$, ie there exists a t-continuous stochastic 0

process
$$J_t$$
 on (Ω, F, P) s, $t P \begin{bmatrix} J_t = \int_0^t f dB \end{bmatrix} = 1 \forall t, 0 \le t \le T$.

3 a State and prove the 1-dimensional Ito formula.

OR

- b State the prove the existence ad uniqueness theorem for stochastic differential equations.
- 4 a Obtain the solution of the filtering problem ie, a stochastic differential equation for X_t .

OR

- b Find the Noisy observation of a Brownian motion.
- 5 a State and prove the Markov property for Ito diffusions.

OR

b State and prove Dynkin's formula.