PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018

(Second Semester)

Branch -- MATHEMATICS

TOPOLOGY

TOPOLOGY				
Time : Three Hours Maximum : 75 Marks				
			Answer ALL questionsALL questions carry EQUAL marks $(5 \times 15 = 75)$	
1	a	i)	Define a topology.	(3)
		ii)	Define a product topology. If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the topology of Y, then prove that the collection	
			$D = \{B \times C / B \in \mathcal{B} \text{ and } C \in \mathcal{C}\} \text{ is a basis for the topology of } X \times Y.$ OR	(12)
	b	i)	Define a Hausdorff space.	(3)
		ii)	Let Y be a subspace of X. Then prove that a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.	(12)
2	a	i)	Let X and Y be topological spaces; let $f: X \to Y$. Then prove that the following are equivalent : (i) f is continuous	
			(ii) for every subset A of X, one has $f(\overline{A}) \subset \overline{f(A)}$	
		,	 (iii) for every closed set B of Y, then set f⁻¹(B) is closed in X (iv) for each x ∈ X and each neighborhood V of f(x), there is a neighborhood U of x such that f(U) ⊂ V. 	(15)
		::5	OR Let X be a matrix answer with matrix d. Define $\overline{d}: X \to X$ by the	
		ii)	Let X be a metric space with metric d. Define $\overline{d}: X \times X \to R$ by the equation $\overline{d}(x, y) = \min\{d(x, y), l\}$. Then prove that \overline{d} is a metric that induces the same topology as d.	(8)
		iii)	State and prove uniform limit theorem.	(7)
3	а	i)	Prove that the image of a connected space under a continuous map is connected.	(8)
		ii)	Prove that a finite Cartesian product of connected spaces is connected. OR	(7)
	b	i)	Prove that a space X is locally connected if and only if for every open set U of X, each component of U is open in X.	(7)
		ii)	Prove that every compact subspace of a Hausdorff space is closed.	(8)
4	a	(i)	Let X be a metrizable space. then prove that the following are equivalent X is compact	:
,		· · · ·	X is limit point compact X is sequentially compact OR	(15)
	b	i)	Prove that every compact Hausdorff space is normal.	(8)
		ii)	Prove that every well-ordered set X is normal in the order topology.	(7)
5	a	State	e and prove Urysohn lemma. OR	(15)
	b	Stat	e and prove Tychonoff theorem.	(15)