PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018

(First Semester)

Branch -- MATHEMATICS

REAL ANALYSIS

		<u>KEAL ANALISIS</u>	
•••	Time	:: Three Hours Maximum: 75 Marks	
		Answer ALL questionsALL questions carry EQUAL marks $(5 \times 15 = 75)$	
	1 a	Assume α increases monotonically and on [a, b] and $\alpha \in R$ on [a, b]. Let f be bounded real function on [a, b], then $f \in R(\alpha)$ on [a, b]. In this	
		case prove that $\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$	(8)
	b	State and prove Fundamental theorem of calculus. OR	(7)
	c	Prove that $f \in R(\alpha)$ on [a, b] iff for every $\geq >0$ there exists a partition P such that $U(p, f, \alpha) - L(p, f, \alpha) < \alpha$.	(7)
	d	If $f, g \in R(\alpha)$ on [a, b], then prove that (i) $fg \in R(\alpha)$ (ii) $ f \in R(\alpha)$	
	·	and (iii) $\begin{vmatrix} b \\ j f d \alpha \end{vmatrix} \le \frac{b}{j} f d \alpha$.	(8)
	2 a	State and prove Cauchy Criterion for uniform convergence.	(8)
	b	Prove that there exists a real continuous function on the real line which is nowhere differentiable. OR	(7)
	с	If K is compact, if $f_n \in \hat{\mathcal{C}}(K)$ for $n = 1, 2, 3$ and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, prove that (i) $\{f_n\}$ is uniformly bounded on K	
		(ii) $\{f_n\}$ contains a uniformly convergent subsequence.	(15)
	3 a	If x > 0 and y > 0, then prove that $\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$	(7)
	b	Suppose a_0 , a_1 , a_n are complex numbers, $n \ge 1$, $a_n \ne 0$,	
		$P(z) = \sum_{k=0}^{n} a_k z^k$, then prove that $P(z)=0$ for some complex number z. OR	(8)
	с	State and prove Parsevel's theorem.	(15)
	4 a	State the prove Contraction Principle theorem.	(8)
	b	Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then prove that dim $X \le r$. OR	(7)
	c	State and prove Inverse function theorem.	(15)
	5 a	State and prove Implicit function theorem. OR	(15)
	b	If [A] and [B] are n by n matrices, then prove that det([B][A])=det[A] det[B].	(8)

c Prove that a linear operator A on \mathbb{R}^n is invertible iff det[A] $\neq 0$. (7)