TOTAL PAGES: 2 14MAP06

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018 (Second Semester)

Branch – MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS

Time : Three Hours Maximum : 75 Ma					
Answer ALL questionsALL questions carry EQUAL marks $(5 \times 15 = 75)$					
1	a	Find the general integral of the linear partial differential equation $(y + 2x)p - (x + yz)q = x^2 - y^2$.	(6)		
	b	Find the general integral of the equation $(x - y) p + (y - x - z)q = z$ and the particular solution through the circle $z = 1$; $x^2 + y^2 = 1$.	(9)		
	c	Show that the equation $xp = yq$; $z(xp + yq) = 2xy$ are compatible and solve them.	(8)		
	d	Find the complete integrals of the equation $p = (z + qy)^2$.	(7)		
2	a	If $u = f(x + iy) + g(x - iy)$ where the functions f and g are arbitrary, then	1997 - L		
		show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.	(3)		
	b	Reduce the equation $\frac{\partial^2 z}{\partial x^2} + x^2 \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form.	(12)		
	c	Find a particular integral $(D^2 - D^1)z = e^{x+y}$.	(7)		
	d	Solve the one dimensional diffusion equation $\frac{\partial^2 z}{\partial x^2} = \frac{1}{k} \frac{\partial z}{\partial t}$.	(8)		
3	a	If $\rho > 0$ and $\psi(\bar{r}) = \int_{r} \frac{\rho(\bar{r}')dT'}{ \bar{r} - \bar{r}' }$ where the volume V is bounded, then			
-		prove that $\lim_{r \to \infty} \bar{r} \psi(\bar{r}) = M$, where $M = \int_{V} \rho(\bar{r}') dT'$.	(10)		

b State (i) Interior Newmann problem, (ii) Exterior Newmann problem. (3+2) OR

c A rigid sphere of radius a is placed in a stream of fluid whose velocity in the undistributed state is V. Determine the velocity of the fluid at any point of the distributed system.

(15)

Cont...

14MAP06 Cont...

4	a	Write a short notes on Longitudinal vibrations in a Bar.	(7)
	b	Derive D' Alembert's solution of one-dimensional wave equation. OR	(8)
	C	Find approximate values for the first three eigen values of a square membrane of side 2.	(15)
5	a	State and prove Duhamel's theorem. OR	(15)
	b	Show that the function $\theta = \frac{1}{\sqrt{t}} \exp\left(-\frac{x^2}{4kt}\right)$ is a solution of the equation	
		$\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{k} \frac{\partial \theta}{\partial t}.$	(5)
	c	Determine the temperature $\theta(\rho,t)$ in the infinite cylinder $0 \le \rho \le a$ when the initial temperature is $\theta(\rho,0) = f(\rho)$ and the surface $\rho = a$ is	
		maintained at zero temperature.	(10)

Z-Z-Z

END