PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018 (Fourth Semester)

Branch – MATHEMATICS

OPERATOR THEORY

1

2

3

Time : Three Hours Maximum: 75 Marks Answer ALL questions ALL questions carry EQUAL marks $(5 \times 15 = 75)$ а Prove that for bounded linear operator Τ, any $||T|| = \sup\{|(Tx, y)| : |x|| = |y|| = 1\}.$ (5)b Let T be an operator on a Hilbert space H. Then show that T* is also an operator on H and the following properties hold : (i) ||T *|| = ||T||(ii) $(T_1 + T_2)^* = T_1^* + T_2^*$ (iii) $(\alpha T)^* = \overline{\alpha}T^*$ for any $\alpha \in C$ (iv) $(T^*)^* = T$ (v) $(ST)^* = T^*S^*$ (10)OR Show that for any positive operator A, there exists the unique positive С operator S such that $S^2 = A$ and $(S) \supset (A)$ (10)d State and prove the Generalised Schwarz inequality. (5)a Let M be a dense subspace of a normed space X. Let T be a linear operator from M to a Banach space Y. If T is bounded, then show that there uniquely exists \overline{T} which is the extension of T from X to Y. (10)Let T = U[T] be the polar decomposition of an operator T on a Hilbert b space H. Prove that $T^* = U^* |T^*|$ is also the polar decomposition of an (5) operator T*. OR. If T = UP is the polar decomposition of an operator T, then prove that U с and P commutes with A and A* where A denotes any operator which commutes with T and T*. (8)d State and prove the Fuglede – Putnam theorem. (7)a Prove (i) If T is an operator such that ||I - T|| < 1, then T is invertible. (5) (5)(ii) If an operator T is normal, then $\sigma(T) = A_{\sigma}(T)$. (iii) $\frac{1}{2} \|T\| \le w(T) \le \|T\|$ for any operator T. (5)OR

State and prove b (5)(i) Spectral mapping theorem (ii) Toeplitz – Hausdorff theorem. (10)

4	а	Prove the following inclusion relations :	
		Self adjoint \subseteq Normal \subseteq Quasinormal \subseteq Subnormal \subseteq Hyponormal	
		\subseteq Paranormal \subseteq Normaloid \subseteq Spectraloid	(15)
		OR	
	b	State and prove	
		(i) Holder – McCarthy inequality	(10)
		(ii) Young inequality	(5)
5	a	Let $T = U T $ be the polar decomposition of a log-hyponromal operator.	
		$\min\{c,t\}$	

the prove that $\widetilde{T}_{s,t} = |T|^{s} U|T|^{t}$ is $\frac{\min\{s,t\}}{s+t}$ - hyponromal for any s > 0and t > 0. (15) OR

b Prove

(i) Every log-hyponormal operator is a class A operator.	(4)
(ii) Every class A operator is a paranormal operator.	(4)

c Give an example of a non-class A, class A(2) and paranormal operator. (7)

Z-Z-Z

END