PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018 (Second Semester)

Branch -MATHEMATICS

MATHEMATICAL STATISTICS

Time	: Three Hours Maximum : 75 Marks	
	Answer ALL questions	
	ALL questions carry EQUAL marks $(5 \times 15 = 75)$	
1 a	i) Define the standardized random variable. Also, obtain its mean and variance.	(4)
	ii) Define Symmetric distribution in terms of its distribution function as well as density function.	(3)
b	Obtain the expression for density function of a random variable, from that of its characteristic function. OR	(8)
C	$g_1(X)$ and $g_2(X)$ are two single-valued function of a random variable X and the expected values $E[g_1(X)]$ and $E[g_2(X)]$ exist. Prove that $E[(g_1(X) + g_2(X)] = E[g_1(X)] + E[g_2(X)].$	(5)
d	Define variance of a random variable X. Obtain the variance of $Y = aX+b$.	(5)
e	Obtain the density function of the random variable X, whose t^2	•
	characteristic function is $\varphi(t) = e^{-\frac{t}{2}}$.	(5)
2 a	Write a detailed note on : 'One-point' distribution.	(7)
b	Define a normal random variable. Obtain the expressions for the moments of normal distribution.	(8)
c	OR Derive an expression for the characteristic function of 'Uniform Distribution' and hence its mean and variance.	(8)
d	Derive the mean and variance of beta distribution.	(7)
3 a	Define 'Stochastic Convergence'. Explain with an example.	(7)
b	State and prove 'Lindeberg – Levy' theorem. OR	(8)
c	State and prove the sufficient part of Levy Cramer theorem.	(9)
d	A coin is thrown 100 times. The number 1 is assigned to the appearance of heads and the number 0 to that of tails. Using De Moivre – Laplace theorem, find the probability that heads will appear more than 50 times and less than 60 times?	(6)
	Cont	

Page 2

14MAP08 Cont...

4	а	i) Define 'Markov Process'.	(3)
•		ii) State the condition under which a markov process becomes homogeneous.	(2)
		iii) State the condition under which a markov process becomes a process with independent increments.	(2)
	b	Obtain the system of differential equations under the Furry-Yule process, and obtain its solution. OR	(8)
	c	State and prove the conditions under which a stochastic process becomes a homogenous Poisson process.	(15)
5	a	Given \overline{x} is the sample mean of a normal distribution $N(m,\sigma)$, find its distribution.	(8)
	b	A simple sample of size 12 is drawn from a population in which the characteristic X has N(1; 2). the observed values are : 2, 2, 5, 0.5, 1, 0, -0.9, 5.1, -1.5, 0.8, 1.1, 0.8, 0.4. Given the statistic $z = ns^2$, where $s - is$ sample standard deviation, what is the probability that z will exceed or equals 32.28?	(7)
	÷	OR	()
	c	Define χ^2 statistic and derive its density.	(7)
	d	Obtain the asymptotic distribution of student's 't' distribution.	(8)
		Z-Z-Z END	