
PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018

(First Semester)

Branch -- MATHEMATICS

ALGEBRA

		Answer ALL questionsALL questions carry EQUAL marks $(5 \times 15 = 75)$	
1	а	If $o(G)$ where p is a prime number, then prove that $Z(G) \neq (e)$.	(9)
	b	If $o(G) = p^2$ where p is a prime number, then prove that G is abelian.	(6)
	с	OR Prove that $n(k) = 1 + p ++ p^{k-1}$	(5)
	d	Prove that the number of p-Sylow subgroups in G, for a given prime, is of the form $1 + kp$.	(10)
2	a	If $f(x)$, $g(x)$ are non-zero elements of $F[x]$, then prove that $deg(f(x) \le deg f(x) g(x)$.	(10)
	b	State and prove the division Algorithm. OR	(5)
	c	State and prove the Eisenstein criteria.	(6)
	d	If R is a unique factorization domain, then prove that so in $R[x]$.	(9)
3	a	The element $a \in K$ is algebraic over F iff F(a) is a finite extension of F. OR	(15)
,	Ъ	Prove that a polynomial of degree n over a field can have at most n roots in any extension field.	(15)
4	a	For any $f(x).g(x) \in F[x]$ and any $a \in F$ Then prove that	
		(i) $(f(x) + g(x)) = f(x) + g(x)$ (ii) $(\alpha f(x)) = \alpha f(x)$ (iii) $(f(x)g(x)) = f(x)g(x) + g(x)f(x)$	(10)
	b	Prove that any finite extension of a field of characteristic 0 is a simple extension.	(5)
	с	If K is a finite extension of F, then prove that $G(K, F)$ is a finite group and its order, $o(G(K,,F))$ satisfies $o(G(K,F)) \leq [K:F]$.	(8)
	d	Define normal extension of F.	(2)
	e	If K is a normal extension of F iff K is a splitting field of some polynomial over F	(5)
5	a	For A, B \in F _n and $\lambda \in$ F, prove that (i) tr(λA)= λ trA (ii) tr(A + B) = tr A + tr B (iii) tr (AB) = tr (BA)	(8)
	b	For A, B \in F _n , prove that (i) $(A')' = A$ (ii) $(A + B) + A' + B'$ (iii) $(AB)' = B'A'$ OR	(7)
	с	If $(\nu T, \nu T) = (\nu, \nu)$ for all $\nu \in V$, then prove that T is unitary.	(5)
	d	If $T \in A(V)$ is Hermitian, then prove that all its characteristic roots are real.	(5)
	e	If N is normal and $AN = NA$, then prove that $AN^* = N^*A$.	(5)