PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

RSc DEGREE EXAMINATION MAY 2017

(Fifth Semester)

Branch- STATISTICS

CORE ELECTIVE-I OPERATIONS RESEARCH-I

Time : Three Hours

Maxi TION A (20 Mortus)

Maximum : 75 Marks

SECTION-A (20 Marks) Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

- 1 Write any four types of models used in O.R.
- 2 Write the canonical form of LPP.
- 3 What is the purpose of using artificial variable?
- 4 Define slack and surplus variable.
- 5 Write any two important results in duality.
- 6 Define an integer programming problem.
- 7 What do you mean by unbalanced Transportation problem? How to convert % into balanced?
- 8 Write the mathematical formulation of a T.P.
- 9 Define an assignment problem.
- 10 Define Total Elapsed time and idle time on a machine in sequencing problem.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Write any five applications of O.R.

OR

- b A firm manufactures two types of products 'A' and 'B' and sells them at a profit of Rs.20/- on type 'A' and Rs.30/- on type 'B\ Each product is processed on two machines r\ and r_2 Type 'A' requires to minutes of processing time on rj and 20 minutes on r_2 . Type 'B' requires 15 minutes on rj and 10 minute on r_2 . Machine rj is available for not more than 6 hours & 40 minutes and Machine B is available for 10 hours during any working day. Formulate the problem as L.P.P. so as to maximize the profit.
- 12 a Write the procedure of solving a LPP by Two-phase method.

b Solve the following LPP by simplex method

Maximize $z = 3xj + x_2$ Subject to $-Xj - 2x_2 < 5$ $3xj + 5x_2 < 6$ and $xj, x_2 > 0$.

13 a What'are the guidelines to be adopted for constructing the dual problem?

- b Write the procedure of dual simplex method.
- 14 a Explain row minima and column maxima method of obtaining initial basic feasible solution of a Transportation problem.

Find the initial basic feasible solution by NWC and Matrix Minima for the 14 b following T.P.

	Ionowing T.F.				
		То		Supply	
		10 20	5 7	10	
		13 9	12 8	20	
	From	4 5	7 • 9	30	
		14 7	1 0	40	
		3 12	5 19	50	
Demand $\overline{60}$.60 20 10					
15 a	What are the assumptions to be made while solving a sequencing problem? OR '				
b	Solve the following assignment problem :				
	n U	U 1*4			
	Ji 0 10	20 30			
	h 20 30				
		25 50			
	h 30 30	35 40			
<u>SECTION - C (30 Marks)</u>					
Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)					
16	Solve the following LPP graphically Maximize $z = 3xj + 2x2$ Subject to $-2x + x_2 < 1$				
10					
	$X_{j} < 2^{2}$				
	$X_j + X_2 < 3$ and $X_j, X_2 > 0$				
17	Use Big- r method to solve				
17	Minimize $z = 30xj + 30x_2 + 10x_3$				
	Subject to $2xi + x_2 + x_3 > 6$				
	$x_1 + x_2 + 2x_3 < 8$				
	and xi, $x_2, x_3 > 0$.				
18					
10	Use dual simplex method to solve the LPP Maximize $z =>-3xi-2x_2$				
	subject to $Xj + x_2 > 1$				
	$\frac{X_1 + X_2 > 1}{X_1 + X_2 < 7}$				
	$X_1 + X_2 < 7$ $X_1 + 2 X_2 > 10$				
	$x_1 + 2 x_2 > 10$ $x_2 < 3 \text{ and } Xj, x_2 > 0$				
19	Find the optimal solution for the following transportation problem.				
	Destination				
	CI [$\begin{array}{c c} D, & D_2 \\ \hline 6 & T \end{array}$	$\begin{array}{c c} D_3 & D_4 \\ \hline 9 & 3 \end{array}$	Supply	
	S Source S_2	$\begin{array}{c c} 0 & 1 \\ \hline 11 & 5 \\ \end{array}$	$\frac{3}{2}$ $\frac{3}{8}$	70 55	
	- S	$\begin{array}{c c} 11 & 3 \\ \hline 10 & 12 \end{array}$	$\frac{2}{4}$ $\frac{3}{7'}$	70	
		85 35	50 45	/0	
20	Find the sequence that minimizes the total elapsed time required to complet the following jobs on machines $r_{1s} r_2$ and r_3 in the order $r \mid -r_2 - r_3$.				
	Test A. B C D E F				
	ri 8	3	7	2 5 1	
	r2 3	4	5	2 1 6	
	u 8	7	6	9 '10 9.	
	Find also the total elapsed time and idle time on rj, $r_2 \& r_3$.				
	Z-Z-Z * END				