$(10 \times 1 = 10)$

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018 (First Semester)

Branch-PHYSICS

QUANTUM MECHANICS !

Time: Three Hours

Maximum: 75 Marks

<u>SECTION-A (10 Marks)</u> Answer ALL questions ALL questions carry EQUAL marks

<u>Choose the correct answer</u> :

- 1Radiation given out by a black body depends on
(i) nature of the body
(ii) absorbed temperature(iii) distance between source and black body (iv) absolute temperature
- 2 Find kinetic energy of the photo electron depends on (i) velocity of electron (ii) frequency of incident radiation (iii) temperature of the incident radiation (iv) velocity of proton
- 3 In which representation wave function is time-dependent and operator timeindependent. (i) Heisenberg picture (ii) Dirac picture

(I) Heisenberg picture	(ii) Dirac picture
(iii) Schrodinger picture	(iv) Maxwell picture

- 4 When is the product of two hermitian operators, hermitian, if they (i) commute (ii) non commuting (iv) none of these
- 5 Indicate the transition probability from mth energy level to nth energy level in time dependent perturbation theory,

(i)	$E_{\underline{m_n}} \sim E_{\underline{m_n}}$ h	(h) $\begin{array}{c} E - E \\ n \end{array}$
(iii)	E _{n <u>n</u>E<u>m</u> h}	$(iv)^{N} E_m - E.$

6 Indicate the Fermi golden rule of time dependent perturbation theory gives the transitions of

- (i) perturbed Hamiltonian from one stationary state to another per unit time
- (ii) unperturbed Hamiltonian from one group of state to another group per unit time
- (iii) unperturbed Hamiltonian from one stationary state to another per unit time
- (iv) None of these

7

Find the value of [L x> *"^]-	
(i) i*y	(ii) i/jP _y
(iii) o	(iv) I* ² P _y

- 8 Name the j₂ matrix for j = 0.
 (i) Unit matrix
 (ii) Both unit and null matrix
 (iv) none of these
- 9 Which of the following represents transmission coefficient?
 (i) transmitted wave intensity relative to an incident wave.
 /'ti'v arrinltfiiHp intencity of 3 transmitted wave

Page 2

18PHP03

Cont...

SECTION - B (35 Marks! Answer ALL Questions ALL Questions Carry EQUAL Marks (5x7 = 35)

11 a	Show that eigen values of a matrix are invariant under similarity transformation.
	OR
	1 0 2
b	Obtain the characteristic equation of matrix $A = 0 2 1$
	2 03
12 a	Explain Hilbert space.
	OR
b	Solve Shrodinger equation for a linear harmonic oscillator and obtain
	$E_n = (n + y^{hco.})$
13 a	Analyze about adiabatic approximation.
	OR
b	Describe Harmonic perturbation.
14 a	Prove $[L_x, L_y] = hL_z$ and $[L_z, L^2] = 0$. OR
b	Determine CG coefficients for addition of orbital and spin angular momentum for electron in P-state.
15 a	Explain briefly a method of approximation for the case of slowly varying small potential.
	OR
b	Analyze the statement 'W.K. approximation is a link between quantum and classical mechanics.
	SECTION - C (30 Marks)
	Answer any THREE Questions
	ALL Questions Carry EQUAL Marks (3 x 1 0 = 30)
16	Justify a matrix can be diagonalized by a unitary transformation

- 16 Justify a matrix can be diagonalized by a unitary transformation.
- 17 Evaluate the eigen values and eigen functions of linear harmonic oscillator using Schrodinger picture.
- 18 Discuss the first order time dependent perturbation, varying in time leads to emission or absorption in energy.
- 19 Enumerate the matrices for the operators J^2 , J_z , J_x and J_y for j = 1
- 20 Analyze how perturbation theory is applied to the degenerate level of system for a time independent perturbation.

Z-Z-Z END