PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018 (Fourth Semester)

Branch -SOFTWARE SYSTEMS (Five year integrated)

OPERATIONS RESEARCH

Time: Three Hours			Ŧ		Maxi	mum: 75 Marks		
	An ALL quest		LL quest rry EQU		ks	(5x15 = 75)		
1 a Define OR and s	tate the car	nonical	and stan	dard from	m of Ll	PP.	(5)	
Solve the LPI Minimize Z = Subject to the $36xi + 6x_2 > 1$ 3x! + 12xj > 36 20xi + 10xi >	20xi + 40 constraint 08	x_2 is	al metho	od :			(10)	
2041 + 1041 >	100 and A		OR				(10)	
Use simplex 1 Maximize $z =$ Subject to the $2x! + x_2 < 50$, $2xj + 3x_2 < 90$	4xi + 10x constraint $2x! + 5x_2$	$s^{2} < 100$	e follow	ing LPP			(15)	
2 a Find IBFS to the approximation	•	transpoi	rtation p	roblem v	with Vo	ogel's	(10)	
upproximition	in mound a		Desti	nation			(10)	
Origin	$\begin{array}{c} O,\\ 0_2\\ 0_3\\ 0_4\\ Demand \end{array}$	D, 5 3 . 6 4 21	D ₂ 1 3 4 1 25	$ \begin{array}{r} D_3 \\ 3 \\ 5 \\ 4 \\ 4 \\ 17 \end{array} $	D ₄ 3 4 3 2 17	Supply 34 15 12 19		
b State the procedure of North West Comer method. OR								
c Define assignm	ent problei	n and st	ate its ty	/pes.			(5)	
d Five men are a that in the tir				-		the cost records, is known and is		

that in the time (hrs) each men takes to do each job is known and is given. Solve the problem by assignment method : (10)

	Jobs									
		1	2	3	4	5				
	А	2	9	2	7	1				
Men	В	6	8	7	6	1				
Men	С	4	6	5	3	1				
	D	4	2	7	3	1				
	Е	5	3	9	5	1				

(7)

(8)

(10)

A firm is considering replacement of a machine whose cost price is
Rs. 17,500 and the scrap value is Rs. 500. The maintenance

Year :	1	2	3	4	5	6	7	8
Maintenance Cost (Rs.) :	200	300	3500	1200	1800	2400	3300	4500
When should the machine	3e rep	aced?	(8)					

Explain the types of replacement models.

OR

- c An individual is planning to purchase a car. A new car will cost Rs. 1,20,000. The resale value of the car at the end of the year is 85% of the previous year value. Maintenance and operation costs during the first year are Rs. 20,000 and they increase by 15% every year. The minimum resale value of car can be Rs. 40,000. When should the car be replaced to minimize average annual cost? (15)
- a Explain the following : (i) Maximin (ii) Minimax (iii) Value of the game (iv) Saddle point.
- b For the game with the following payoff matrix, determine the optimum strategies and value of the game. (7) Player B

	Player I
	$B]B_2$
Player A	5 1
I layer A	34

OR

- c Define queuing system and explain the characteristics of queuing system.
- d In a bank, at every 15 minutes one customer arrives for cashing the cheque. The staff at the only payment counter takes 10 minutes for serving a customer on an average. State the average queue length. (5)
- a A small project consists of seven activities for which the relevant data are given below :

Activity :	Α	В	С	D	Е	F	G				
Preceding Activities :	-	-	-	A, B	A, B	C, D, E	C, D, E				
Activity duration (days) :	4	7	6	5	7	6	5				

- (i) Draw the networlc and find the project completion time.
- (ii) Calculate total f loat for each of the activities and highlight the critical path.

OR

b A project has the following characteristics and time estimate. Construct the PERT networ c. Find the critical path and the project duration. (10)

Activity	1-2	2-3	2-4	3-5	4-5	4-6	5-7	6-7	7-8	7-9	8-10	9-10
Optimistic time :	1	1	1	3	2	3	4	6	2	4	1	3
Most likely time :	1.5	2	3	4	3	5	5	7	4	6	2	5
Pessimistic time :	5	3	5	5	4	7	6	8	6	8	3	7

c State the difference between PERT and CPM.

(15)