PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2017 (Third Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

CLASSICAL ALGEBRA AND TRIGONOMETRY

Time : Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks) Answer ALL questions ALL questions carry EQUAL marks (10x2 = 20)

Form a rational cubic equation which shall have for roots 1, 3 - V-2. State other 3 roots of the equation if one root is V5 + V2.

Test the series $Z = \begin{bmatrix} 00 & n^{+} + 1 \\ 0 & 0 \end{bmatrix}$ is convergent or divergent. $n=0 2^{n}+1$

Is the series $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!}$ convergent?

 $\frac{n+1}{n+2^{\wedge}}$, a monotonic increasing sequence? Is

- 6 State Cauchy's root test.
- 7 Expand Cosⁿ0.

8 Verify
$$\cos h^2 x + \sin h^2 x = \cos h 2x$$
.

9 Find $\log(1+i)$

10 Find the value of
$$2^3 < 1\frac{11}{5} + \frac{1}{5} + \frac{1}{12} + \frac{1}{5} + \frac{1}{12}$$

SECTION - B (25 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 5 = 25)

Solve the equation 81 x 3 - 1 8 x 2 - 3 6 x + 8 = 0 whose roots are in 11 a harmonic progression. "

OR

Frame an equation with rational coefficients, one of whose roots is V5 + V2 b

Discuss the convergence of the series $Z = \frac{1}{n^k}$, 12 a

OR

Prove that if $\{a_n\}$ converges to a and $\{b_n\}$ to b, then $\{a_nb_n\}$ converges to ab.

Examine the convergence of 13 a

į2

b

$$+ \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} + \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2}$$

OR 00

+

b Show that the series ^

is uniformly convergent for all values of

Page 2

 $\frac{i}{14} = \frac{1}{2} \frac{\sin 60}{\sin 60} \frac{A}{\sin 60}$ in terms of $\cos 0$. OR b Express cosh ⁶0 in terms of hyperbolic cosines of multiples of 0. 15 a Reduce $(a + ip)^{x+iy}$ to the form A + iB. b Find the sum of series $\cos^2 x + \cos^2 (x+y) + \cos^2 (x+2y)$... upto n terms. **SECTION - C (30 Marks) Answer any THREE Questions** ALL Questions Carry EQUAL Marks ($3 \times 10 = 30$) Solve $6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0$.. 16 17 Discuss the convergence of the series. 00 | 2 ------ (a,b, p,q being all positive) n=l $(a + n)^p (b + n)^q$ • ^ 18 Examine the convergence of the series •' Expand sin³ 0 cos ⁵0 in a series of sines of multiples of 0. 19 20 Sum to infinity of the series: $\cos a + V_2 \cos (a + p) + V_2$. ³A $\cos (a + 2p) + \dots$ Z-Z-Z **END**