. I

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2017 (Fourth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

ANALYTICAL GEOMETRY OF 3P & VECTOR CALCULUS

Time	: Three Hours Maximum : 75 Marks ' %
	$\frac{\text{SECTION-A (20 Marks)}}{\text{Answer ALL questions '}} \bullet ,$ ALL questions carry EQUAL marks (10x2 = 20)
1	For what values of c the planes $x + 2y + 3z + c = 0$ and $2x + cy + 6z + 1 = 0$ are parallel.
2 • Find the angle between the planes $x - y + z = 1$ and $2x - 3y + z = 7$.	
3	Find the equation of the line through A $(1,0, -2)$ and parallel to the line joining B(4, 6, 7) and C (-2, 8, 1).
4	Write any point of the line $(1, 2, 3)$.
5	Find the centre and radius of the sphere $2x^2 + 2y^2 + 2z^2 + 5x + 7y + 8z - 1 = 0$.
6	Find the equation of the sphere drawn on the segment joining $(1, 5, 6)$ and $(-2, 1, 0)$ as diameter.
7	Find the directional derivative of $<$)> = $x^2yz + 4xz^2 + xyz$ at (1, 2, 3) in the
	direction of 2 $i + j - k$.
8	If $f = xz^3 i - 2xyzk + xzk$, find curl f at (1,2,0).
9	If S is any closed surface enclosing a volume v, find jj r.ds.
10	State Green's theorem.
SECTION - B (25 Marks!	

 $\frac{\text{SECTION - B (25 Marks!}}{\text{Answer ALL Questions}}$ ALL Questions Carry EQUAL Marks (5 x 5 = 25)

11 a Find the equation of the plane which bisects perpendicularly the join of (2, 3, 5) and (5,-2, 7).

. O R

b A variable plane passes through the fixed point' $(x_{1?} \text{ yi}, z_i)$ and meets the co-ordinate axes at A, B, C. Show that the locus of the centroid of the

triangle ABC is $\frac{x}{x} + \frac{y}{z} = 3$.

12 a Show that the lines $\frac{x-5}{AA} - \frac{y-7}{-5} - \frac{z+3}{-5}$ and $\frac{x-8}{7} = y - 4 = \frac{z-5}{3}$ are coplanar. Find their common point and the equation of the plane in which they lie.

OR

b Find the volume of the tetrahedran whose vertices are (1, 2, 3), (2, 3, 5)(-2,-1,2) and (3, 0, -3).

Page 2

- 13 a Prove that the two spheres $x^2 + y^2 + z^2 2x 4y 4z = 0$ and $x^2 + y^2 + z^2 + 10x + 2z + 10 = 0$ touch each other and find the point of contact.
 - OR
 - b Find the equation f the sphere having the circle $x^2 + y^2 + z^2 = 9$; x - 2y + 2z = 5 for a great circle.
- - b If V<J) = $\vec{yz} i + \vec{zx} j + \vec{xy} k$, find <|>.

15 a If $A = (5xy - 6x^2)i + (2y - 4x)j$, evaluate]A.d^ where C is the curve y = x in the xy plane from the point (1, 1) to (2, 8). OR

b State Gauss's divergence theorem and the stoke's theorem.

- 16 Prove that the origin lies in the acute angle between the planes x + 2y + 2z = 9 and 4x 3y + 12z + 13 = 0. Find the planes bisecting the angles between them and point out which bisects the acute angle.
- Find the length and the equations of the shortest distance between the lines $x-10 = \frac{y-9}{3-2} = \frac{y-12}{4} = z-5.$
- 18 Find the image of the line x + 5 y + 7 = z in the plane 2x y + z + 3 = 0.
- 19 Prove that curl curl F = 4 grad div $F V^2F$ and hence deduce that curl curl curl curl F = V F if F is solenoidal.
- ?
- 20 Verify Stoke's theorem for F = (y-z) i+ yz j-xzk where S is the surface bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1 above the xy plane.