PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2017 (Fifth Semester).

Branch - MATHEMATICS

REAL ANALYSIS

Time: Three Hours Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

• ALL questions carry EQUAL marks (10x2 = 20)

- 1 Prove that every infinite subset of a countable set A is countable.
- 2 Prove that every neighbourhood is an open set.
- 3 Define finite subcover.
- 4 Define separated set.
- 5 Define complete set.
- 6 Suppose the radius of convergence of XC_nZⁿ is 1, and suppose

$$C_0 > C! > C_2 > \dots$$
, $\lim_{n \to \infty} C_n = 0$ Then prove that $\pounds C_n Z^n$ converges at

every point on the circle Izl = 1, except possibly at z = 1.

7 Consider
$$f(x) = \begin{cases} x+2 & (-3 < x < -2) \\ -x-2 & (-2 < x < 0), \text{ Is it continuous at } x = 0 \text{ or } \\ x+2 & (0 <; x < 1) \end{cases}$$

discontinuous at x = 0.

- 8 Define bounded set.
- 9 State mean value theorem
- Let f be defined by $f(x) = \langle x \rangle_{x}^{x}$, Is f is differentiable at x $0 \langle x \rangle_{x}^{x} = 0$

SECTION - B (25 Marks)

Answer-ALL Questions

ALL Questions Carry EQUAL Marks (5x5 = 25)

11 a Let A be the set of all sequences whose elements are the digits 0 and 1. Then prove that this set A is uncountable.

OR

- b Let $\{E_a\}$ be a finite or infinite collection of sets E_a Prove that $\bigcup_{\forall \alpha} E_{\alpha} = \bigcap_{\alpha} \left(E_{\alpha} = \sum_{\alpha} E_{\alpha} = \sum_{\alpha} \left(E_{\alpha} = \sum_{\alpha} E_{\alpha} = \sum_{\alpha$
- 12 a Prove that compact subsets of metric spaces are closed.

OR

- b Let P be a non-empty perfect set in R^k. Prove that P is uncountable.
- 13 a Suppose $\{S_n\}$ is monotonic. Prove that $\{S_n\}$ converges if and only if it is bounded.

OR

b — converges if p > 1 and diverges if p < 1. Prove.

Cont...

14 a Let f be a continuous mapping of a compact metric space X into a metric space Y. Prove that f is uniformly continuous on X.

OR •

- b If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, prove that f(E) is connected.
- 15 a State and prove chain rule for differentiation.

OR

b Suppose f is a real differentiable function on [a, b] and suppose

 $f'(a \le A. \le f'(b) \cdot Prove that there is a point x e (a,b) such that <math>f'(x) = X$.

SECTION - C (30 Marks)
Answer any THREE Questions
ALL Questions Carry EQUAL Marks (3x10 = 30)

- 16 Prove that
 - (a) For any collection $\{G_a\}$ of open sets, $U_a \wedge a^{ls} \circ P^{en}$
 - (b) For any collection {F_a} of closed sets, fl_a^a ls dosed.
 - (c) For any finite collection Gi, G_2 , G_n of open sets $f|^n \wedge Gj$ is open.
 - (d) For any finite collection Fj, F_2 , F_n of closed sets $U''_{=1}$ F_1 is closed.
- 17 Prove that every K-cell is compact.
- 18 For any sequence $\{C_n\}$ of positive numbers, prove that

$$\begin{array}{c|c} & \lim\inf_{n\to\infty} c^{+1} < \lim\inf_{n\to\infty} \\ c_n & n\to\infty \end{array}$$

$$\lim\sup_{n\to\infty} c^{-1} < \lim\sup_{n\to\infty} c^{n+1} - c^{-1} < \lim\sup_{n\to\infty} c^{n+1} < \lim_{n\to\infty} c^{n+1$$

- 19 Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if f-1 (V) is open in X for every open set V in Y.
- 20 State and prove Taylor's theorem.

Z-Z-Z END