PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2018

(Fifth Semester)

Branch- STATISTICS

CORE ELECTIVE -1: OPERATIONS RESEARCH - I

Time : Three Hours

Maximum : 75 Marks

SECTION-A (20 Marks) Answer ALL questions ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define Operations Research.
- 2 What is Linear Programming Problem?
- 3 What is meant by an artificial variable?
- 4 State the various methods of solving LPP.
- 5 Write the meaning of duality.
- 6 What is an IPP?
- 7 Define basic feasible solution.
- 8 What is degeneracy in a transportation problem?
- 9 What is meant by an assignment problem?
- 10 Define Sequencing problem.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a What are the limitations of O.R?

OR

b Solve graphically Min z=5xi+4x₂ Subject to

 $4x_1 + x_2 > 40$

2x1+3x₂>90 and xi,x₂>0

12 a Write a short note on Slack and Surplus variables.

OR

- **b** Describe the steps involved in the Simplex method.
- 13 a Explain the steps in the process of formulation of primal to dual. OR
 - b Explain the Gomory's algorithm.
- 14 a Find an initial basic feasible solution by North-West comer rule. Destination

		Ι	II	III	IV	Supply
	Si	5	3	6	2	19
Source	S_2	4	7	9	1	37
	\mathbf{S}_{2}^{2}	3	4	7	5	34
	S ₃ Demand	16	18	31	25	

OR

- b Describe the method of finding an optimal solution by MODI method.
- 15 a Write down the steps in the Hungarian method of solving an assignment problem.

OR

b State the assumptions used in a Seauencine problem.

SECTION - C (30 Marks)

Answer any **THREE** 'Questions ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- 16 Discuss the scope of Operations Research.
- 17 Solve the following LPP by Simplex method.

Max $z=5xi+3x_2$ subject to the constraints $xj+x_2<2$ $5xi+2x_2<10$ $3x_1+8x_2<12$ and $X],x_2>0$

18 Use dual simplex method to solve the following LPP. Max $z=4x]+2x_2$ subject to the constraints $X_J+x_2>3$ $X_J-x_2>2$ and $X_J,x_2>0$

19 Find the optimal solution for the following transportation problem:

	Warehouse					
	W,	W_2	W_3	W_4	Capacity	
F,	10	30	50	10	7	
Factory F ₂	70	30	40	60	9	
F_3	40	8	70	20	18	
Requirement	5	8	7	14		

20 Solve the following minimal assignment problem:

	Men						
		А	В	С	D		
	1	18	26	17	11		
Job	2	13	28	14	26		
	3	38	19	18	15		
	4	19	26	24	10		
				Z-Z-Z			END