PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) BSc DEGREE EXAMINATION DECEMBER 2018

(First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

ORDINARY DIFFERENTIAL EQUATIONS & LAPLACE TRANSFORMS

Time: Three Hours Maximum: 75 Marks SECTION-A (10 Marks) Answer ALL questions ALL questions carry EQUAL marks $(10 \ge 1 = 10)$ 1 dy Find a function y=f(x) satisfying the differential equation and the initial condition y(l)=5? $\frac{1}{XX} = 6$ (ii) $\frac{1}{XX} = 6$ (iv) $\frac{1}{-6} = 6$ (1) The necessary condition for the differential equation Mdx+Ndy=0 to be exact is a²M ay ay ax axay aM aN aM (ii) a²N (iv) dM dy dN (i) ay ax dxdx 3 Which one is a linearly dependent function? (i) e & e^x (ii) cos x & sin x (iii)sin 2x & sin x cos x (iv) x & jxj If e^{'3x}, cos 2x and sin 2x are all solutions of the differential equation 4 $y^{III}+3y^{11}+4y^{1}+12y=0$, then_____ is also a solution of $y^{111}+3y^{u}+4y^{1}+12y=0$. Cie' $_{3x}$ +C2Cos 2x+C3 sin 2x (ii) Cje'' $_{3x}$ C2COS 2x C3 sin 2x (i) (iv) cie'³C2COS $2x/c3 \sin 2x$ (iii) $\operatorname{Cie}^{3x}/c2\operatorname{COS} 2x \operatorname{C3} \sin 2x$ The voltage drop in resistor is____ (i) I (ii) TTQ (iii) L^ (iv) RI The general solution of y +b y=0 is _____. (i) y(x)=cicos bx+C2 sin bx (ii) $Cie^{x}+C2e^{tx}$ (iii) $ci+c_{2}x$ (iv) $(ci+c_{2})x$ 6 7 r(n + l) =_____. (iii) n (ii) (n+1)! $(iv) (n!)^2$ (i) n! State the value of L *i* $\frac{1 \text{ i}}{\frac{3 \text{ r}}{1 \text{ s}}}$ (iii) ¹₋r (ii) 2t² (iv) it (i) t² 9 The convolution of $f(t)=e^{at}$ and $g(t)=e^{at}$ is (iv) e^{at}/t (ii) te^{at} (iii) 2e^{at} (i) e^{at} 10 The transform of the triangular wave function is____ (i) $\frac{1}{s} \tanh \frac{as}{2}$ (ii) $\tanh \frac{as}{2}$ (iii) $\frac{1}{2} - \tan \frac{as}{2}$ (iv) $\tanh \frac{as}{2}$

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks (5x5 = 25)

11 a Solve the differential equation $(6xy-y^3)dx+(4y-K3x^2-3xy^2)dy=0$.

OR

b Suppose that a time t=0, ten thousand people in a city with population M=100 thousand people have heard a certain rumor. After 1 week the number p(t) of those who have heard it has increased to p(l)=20 thousand. Assuming that p(t) satisfies a logistic equation, when will 80% of the city's population have heard the rumor?

12 Cont...

b Show that the functions $y_i(x)=e^{i_{3x}}$, $y_2(x)=\cos 2x$ and $y_3(x)=\sin 2x$ are linearly independent.

13 a Find a general solution of the fifth-order differential equation $9y^{(5)}-6y^{(4)}+y^{(3)}=0$.

b Find a particular solution of $y^{11}+3y^{4}+4y=3x+2$.

14 a Show that $L{te^{at}} =$

OD

b Find the inverse laplace transform of $R(s) = \frac{s^2 + l}{s^3 - 2s^2 - 8s}$

(s-a)²'

15 a Find L^{J} {tan J }.

		OR	
bi) Find $L{g(t)}$ if $g(t)=$	0	if	t < 3,
	*2	if	t > 3.
ii) Find L{f(t)} iff(t)= j ^{CC})^2t	if if	$\begin{array}{l} 0 < t < 2n \\ t > 2TC. \end{array}$

SECTION -C 140 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \ge 40)$

2

16 a Solve the differential equation $2xy = \frac{dy}{dx} + 3y$. OR

b Consider an animal population p(t) that is given by the equation

^ =
$$0.0004p^2$$
 - $0.06p$. Find p(t) if (a)p(0)=200; (b) p(Q)=100. dt

17 a Show that the three solutions $y_i(x)=x$, $y_2(x)=x \log x$ and $y_3(x)=x^2$ of the third order equation.

 $x^{3}y^{(3)}-x^{2}y^{(2)}+2xy^{(1)}-2y=0$ are linearly independent on the open interval x>0. Also find a particular solution that satisfies the initial conditions y(l)=3, $y^{(1)}(l)=2$, $y^{(2)}(l)=1$.

OR

b Discuss the application of linear differential equations.

18 a Solve the initial value problem $y^n-3y^!+2y=3e^{x}-10\cos 3x$. y(0)=1, $y^1(0)=2$.

- b : Consider an RLC circuit with R=50Q, L=0.1H and c=5xl0'4f. At time t=0, when both 1(0) and Q(0) are zero, the circuit is connected to a llOv, 60Hz alternating current generator. Find the current in the circuit and the time lag of the steady periodic current behind the voltage.
- 19 a Solve the initial value problem $x^n+4x=\sin 3t$, x(0)=x'(0)=0.

OR

b Consider the mass spring dashpot system with initial condition $x(0)=x^1(0)=0$ and with the imposed external force f(t)=15sin2t. Find the resulting transient motion and steady periodic motion of the mass.

20 a i) Find
$$L\{t^2 \sin kt\}$$
 ii) Find $|$.

OR

b Consider the RLC circuit with R=110Q, L=1H, C=0.001F and a battery supplying Eo^OOv. Initially there is no current in the circuit and no charge on the capacitor. At time t=0 the switch is closed and left closed for 1 second. At time t=l, it is opened and left open there after. Find the resulting current in the circuit.

END