Maximum: 75 Marks

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) **BSc DEGREE EXAMINATION DECEMBER 2018** (First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

CALCULUS

Time: Three Hours

<u>SECTION-A (1</u>0 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

1 The curvature of the curve is given by

> (ii) $jr'(r)j^3$ (iii) r'.r¹¹ (iv) None of the above (i) |r'(0)|

2 Mention the correct value of $\langle u(t), v(t) \rangle$

 $(0 \, \text{.}\, \pounds(w(0)-v(0 + (0 - \pounds(w(0)))))) = (0 - \pounds(w(0))) = (0 - \emptyset(w(0))) = ($

- 3 Evaluate f(3,2) where f(x,y) =
- (i) 2 (ii) 3 (iii) 0(iv) 1 If $f(x,y)=x^3+x^2y^3-2y^2$, then find fx(2,1). 4
- (ii) 14 (iv) 5 (i) 12 (iii) 16
- Write $\frac{dy}{dx}$ for the implicit function f(x,y)=0. 5

$C)(f_{a})$	5F	dF	dF dF
G)(fo	(ii) ox	⁽ⁱⁱⁱ⁾ dy	(iv) - ox ay

6 Define the directional derivative of f(x,y) at (x_0,y_0) in the direction of a unit vector w = $\langle a, b \rangle$.

(i) Vf (ii)
$$u$$
 (iii) $T\frac{Vf}{Vf}u$ (iv) |Vfj

- n Write down the relationship between Cartesian co-ordinate and polar co-ordinate, (i) x=rcos0 (ii) y=rsin0 (iii) x=eos0 (iv) x=rcos0, y=rsinQ
- 8 Write down the value of j jxy^2dxdy .

9

o a(i) t (iv) 5 (ii) 1 (iii) 4 abc Find the value of j j ^*dxdydz*. 000 (iii) abc (iv) abc² (i) $a^{2}bc$ (ii) abc^{2}

Write down the formula to convert from cylindrical to rectangular co-ordinate. 10 (i) (r, 0, (j)) to (x,y,z) (ii) drd0d(() = jjj.dxdydz (iii) dxdydz (iv) None of the above

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks (5x5 = 25)

Find the vector equation and parametric equations for the line segment that 11 a joins the 2 points (1,3,-2) and (2,-1,3).

- b Find (i) the derivative of $r(t) = (1 + t^{J})i + te^{r}i + sin2tk$ and (ii) the unit tangent vector at the point t=0.
- 12 a Where is the function $h(x,y)=\arctan(^{\wedge})$ continuous?

18MCU01 Cont...

If $z=e^x \sin v$, where $x=st^2$ and $y=s^2t$, find — and —. 13 a

Prove that (0,0) is one critical point of the function $f(x,y)=10x^2y-5x^2-4y^2-x^4-2y^4$ b

Evaluate the integral J Jsin(y).dydx. 14 a Ox

OR

- Find the moment of inertia I_x , I_y and I_0 of a homogenous disk D with density b p(x,y) = P, center the origin and radius "a".
- Find the cylindrical coordinates of the point with rectangular co-ordinates 15 a (3, -3, -7).

OR

b Convert spherical co-ordinates

into rectangular co-ordinates.

SECTION -C (40 Marks)

Answer **ALL** questions

ALL questions carry EQUAL Marks (5x8 = 40)

16 a Prove that the curvature of the curve given by the vector function is

f'(t)xf''(t)iK(t) = ---F'(t)P

OR

Find the curvature of the parabola $y=x^2$ at the points (0,0), (1,1) and (2,4). b

17 a Find
$$\frac{dz}{dx}$$
 and $\frac{dz}{dy}$ if $x^3+y^3+z^3+6xyz=1$.

OR

- Show that $f(x,y)=x.e^{xy}$ is differentiable at (1,0) and find its linearization there. b
- 18 a If f(x,y,z)=x.sin(yz)(i) Find the gradient of f and (ii) Find the directional derivative of f at (1,3,0) in the direction of the vector S = 1 + 2i-k.

OR

- b Find the equation of the tangent plane and normal line at the point (-2,1,3) to the ellipsoid $\frac{2}{2} \frac{2}{2} + y + 2 = 3$.
- Evaluate JJxydA, where D is the region bounded by the line y=x-l and the 19 a parabola y =2x+6.

OR

- Find the volume of the solid that lies under the paraboloid $z=x^2+y^7$ above the b xy plane and inside the cylinder $x'+y^2 = 2x$.
- A solid E lies within the cylinder $x^2+y^2=1$, below the plane z=4 and above 20 a the paraboloid $z=1-x^2-y^2$ the density at any point is proportional to its distance from the axis of the cylinder. Find the mass of E.

OR

2 2 2 Y+y+z $\wedge 2$ dv, where B is the unit ball Evaluate R