PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2018

(First Semester)

Branch - MATHEMATICS

CALCULUS -I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions ALL questions carry EQUAL marks

(10x1 = 10)

- The plane determined by the normal and binormal vectors at a point P on a curve c is called ______ of C at P.
 (i) Osculating plane (ii) Orthogonal plane (iii)normal plane (iv) binormal plane
 The curve with parametric equations x=(4+sin 20t) cost, y=(4+sin 20t)sin t,

(i) trefoil x not (ii) toroidal spiral (iii) twisted cubic (iv) helix

- 3 The function g(t)=arc tan t is____
 - (i) continuous everywhere (ii) discontinuous
 - (iii) continuous except where x=0 (iv) discontinuous except where x=0

4 If
$$f(x,y) = sinf^{}$$
, then $\S =$ _____

$(0 \qquad (`>)^{\cos}(iip (``>) \sin (irp-fly < iv) \sin i^{\wedge}$

- 5 If f(x,y,z)=x sin yz, then gradient of f is (i) (sin yz, x cos yz, xy cos yz) (ii) (sin yz, xz cos yz, y cos yz)
 - (iii) (sin yz, xz cos yz, xy cos yz) (iv) (sin yz,-xz cos yz, xy cos yz)

If f has a local maximum or minimum at (a,b), then (a,b) is a _____ of f. (i) Critical point (ii) Minimum point (iii) Maximum point (iv) Extreme point The moment of inertia of a particle of mass m about an axis which is at a

distance r from the particle is defined to be

- (i) mr (ii) r² (iii) mr² (iv) mr^J
- 9 A solid region E is said to be of ______ if it lies between the graphs of two continuous functions of x and y.
 (i) type I (ii) type II (iii) type III (iv) type IV
- 10 If the density is constant, then the center of mass of the solid is called the ______ of the region E.
 - (i) inertia (ii) Center (iii) moment (iv) centroid

SECTION - B (25 Marks)

Answer ALL questions ALL questions carry EQUAL Marks (5x5 = 25)

ALL questions carry EQUAL Marks (5x) =

11 a Show that the curvature of the circle of radius a is $\frac{1}{a}$.

OR

b Bring out the length of the arc of the circular helix with vector equation

 $r(t)=\cos i + \sin t j + tk$ from the point (1,0,0) to the point (1,0,2 re).

12 a If $f(x,y)=x^3+x^2y^3-2y^2$, then calculate fx(2,l) and fy(2,l).

OR

b Show that $f(x,y)=xe^{xy}$ is differentiable at (1,0) and find its linearization there. Then analyze to approximate f(1.1,-0.1).

 $iv \le T$) ftx vl if ftx.vl=x -3xv+4v and u is the

10

- Cont.,. 13 b Find the equations of the tangent plane and normal line at the point (-2,1,-3)to the ellipsoid $A^2 + y^2 + y^2 = 3$.
- 14 a Solve JJ(3x + 4y)dA, where R is the region in the upper half-plane bounded by the circles x^2+y^2 :=1 and $x^2+y^2=4$.

b Apply a double integral to find the area enclosed by one loop of the four leaved rose $r=\cos 20$.

15 a Calculate JjJe<sup>$$x+y$$
, $2 dv$</sup> , where B is the unit ball:
B

$$B^{=}\{(x,y,z):x^{2}+y^{2}+z^{2}<1\}.$$

OR

b Evaluate J J
$$J = \frac{y^2}{2} + \frac{y^2}{2} + \frac{y^2}{2}$$

-2-V4-x² -y/x² +y²
SECTION -C (40 Marks!

- ALL questions carry EQUAL Marks (5 x 8 = 40)
- 16 a Develop the unit normal and binormal vectors for the circular helix r(t)=cost i+sint j+tk.

OR

b Show that the curvature of the curve given by the vector function r is

$$k(t) = \frac{jr^{1}(t)xr^{11}(t)}{r'(.)^{3}}$$

17 a Discuss (x,y) $\xrightarrow{\lim}$ (0,0) $\stackrel{\bullet_3}{\bullet_-}$ if it exists.

OR

OR b If $f(x,y) = \frac{xy}{x^2+y}$, then justify (x,y)- $\lim_{x \to \infty} (0,0) f(x,y)$ exist?

18 a Discover the directional derivative of the function f(x,y)=x y - 4y at the point (2,-1) in the direction of the vector v = 2i + 5 i.

OR

- b Discover the maximum value of the function f(x,y,z)=x+2y+3z on the curve of the insertion of the plane x-y+z=l and the cylinder $x^2+y^2=l$.
- 19 a Discover the mass and center of the mass of a triangular lamina with vertices (0,0), (1,0) and (0,2) if the density function is p(x,y) = 1 + 3x + y.

OR

b If the joint density function for x and y is given by

 $f(x,y) = i \int_{0}^{1} \frac{fc(x+2y)}{0} ifO < x < 10, 0 < y < 10$ otherwise discover the value of the

constant C. Find P(x < 7, y > 2).

20 a Examine the centre of mass of a solid of constant density that is bounded by the parabolic cylinder $x=y^2$ and the planes x=z, z=0 and x=1.

OR

(*+y)'

b Identify the integral fje[^]"y-)dA, where R is the trapezoidal region with vertices fl.OL (2.0). (0,-2) and (0,-1).