2 14MAU07

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2018

(Third Semester)

Branch - MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS & FOURIER TRANSFORMS

Time : Three Hours

Maximum: 75 Marks

SECTION-A 120 Marks) Answer ALL questions ALL questions carry EQUAL marks $(10 \times 2 = 20)$

1 Solvep=log(px-y).

- Solve $\frac{d^2z}{dxdy} = \sin x.$ 2
- Find the general solution of 2p+3q=1. 3
- 4 Solvepxy+pq+qy=yz.
- 5 Find the constant a_0 of the Fourier series of the function f(x)=k, 0 < x < 2n.
- Write the formula for half range cosine series in (0,p) of a function f(x). 6
- 7 State the Fourier integral theorem.
- What is meant by reciprocal with respect to Fourier transform? Give an example. 8
- 9 Write finite Fourier sine transform of f(x).

10 Prove that
$$F_c \int f^*(X) f = (-1)^p f(1) - f(0) + -y U_s(p).$$

SECTION - B (25 Marksf

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

- 11 а Solve $xyp^{2}+p(3x^{2}-2y^{2})-6xy=0$.
 - b Solve p + q = npq.
- 12 a Solve (mz-ny)dx+(nz-lz)dy+(ly-mx)dx=0.
 - b Solve pz+qy=x.
- 13 a Find the Fourier series for the function $f(x)=e^x$ defined in (-71,71).

OR

OR

OR

b Obtain the Fourier series for the function f(x) = |x| in (-71,71).

14 a Find Fourier sine transform of

 $a^{2}+x^{2}$ and Fourier cosine information of

 $a^{2}_{+x} x^{2}$

OR

Find Fourier sine transform of $-\frac{1}{x}$. b

Find the finite Fourier Sine and Cosine transforms of $f(x)=x^3$ in (0,1). 15 a OR

Solve — = — f o r $0 \le x \le 10$. t>0 given the conditions u(0,t)=u(10,t)=0 & dx^2

for t>0 and $u(x,0)=10x - x^2$ for 0 < x < 10.

Page 2

14MAU07

Cont...

<u>SECTION - C (30 Marks)</u> Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- 16 i) Obtain a partial differential equation, by eliminating the arbitrary function from, $cp(x^2 + y^2 + z^2, lx + my + nz) = 0$.
 - ii) Determine the complete integral of $9(p^2z+q^2)=4$.
- 17 Solve" $(p^2+q^2)y=qz$ by using Charpit's method.

19 Find the Fourier transform of f(x)=1-jx| if jx|<1 and hence Find the value

$$J - dt = 0 \text{ for }]x] > 1.$$

20 Solve $\frac{du}{dt} = K \frac{d^2 u}{dx^J}$ for 0<x<00. t>0 given the conditions

18

ii)
$$\frac{dx}{dx}(0,t) = -a$$
 (constant)

iii) u(x,t) is bounded.