PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2018

(Fifth Semester)

Branch - MATHEMATICS

ALGEBRA-1

Time : Three Hours

Maximum : 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

1 Define projection of S x T on S and T.

- 2 Prove that if G is a finite group and a eG then $a^{\circ \wedge} = e$.
- 3 If $\langle j \rangle$ is a homomorphism of G into G then prove that $\langle j \rangle (e) = e$, the unit element of G.
- 4 Definekernel.
- 5 Define even permutation with example,
- 6 Express the given permutation into cycles:

(1 2 3 4 5.6 7 8 9^s - i_v2 3 8 1 6 4 7 5

- 7 Define ring.
- 8 Let Obe the set of all symbols $a_0 + a_1i + a_2j + a_3k$ where all the numbers a_0 , a.i, a_2 and a_3 are real numbers. Compute the sum and product of its elements.
- 9 Define Maximal ideal.
- 10 DefineEuclidean ring.

SECTION - B (25 Marks)

Answer ALL Questions ALL Questions Carry EQUAL Marks ($5 \times 5 = 25$)

- 1 1 a For all aeG, prove that $Ha = \{x \ e \ G \ / \ a = x \mod H\}$. OR
 - b Prove that there is a one-to-one correspondence between any two right cosets of H in G.
- 12 a if G is a group, N is a normal subgroup of G, then prove that G|N is a group under multiplication. OR
 - b If <|) is a homomorphism of G into Q with kernel K, then prove that K is a normal subgroup of G,
- 13 a Let G be a group of order 99 and suppose that H is a subgroup of G of order 11. Prove that H itself is a normal subgroup of G.

i

4 a Prove that any field F is an integral domain.

OR

- b If <(> is a homomorphism of R into R¹ with Kernel I(cj>), then prove that (i) I(<j>) is a subgroup of R under addition (ii) If a e 1(4)). and r *e* R then both ar and ra are in I(4>).
- 5. a Let R be the ring of all the real valued continuous functions on the closed unit interval. Let $M = \{f(x) \in R \mid f(1/2) = 0\}$. Prove that M is a maximal ideal of R.

OR

b Let R be a Euclidean ring and let A be an ideal of R. Then prove that there exists' an element a_0 e A such that A consists exactly of all a_0x as x ranges over R.

<u>SECTION - C (30 Marks)</u>

Answer any **THREE** Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

16 Let G be the set of all 2 x 2 matrices

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are real

numbers such that ad - be $^{\wedge}$ 0. Prove that G is a group under multiplication.

- 17 Prove that HK is a subgroup of $G \iff HK = KIT$.
- 18 Prove that 1(G) s GjN where 1(G) is the group of inner automorphism of G-and Z is the center of G.
- 19 If R is a ring then for all a, b e R, prove the following: i) aO = 0a = 0 ii) a(-b) = (-a)b - (ab) iii) (-a)(-b) = ab.
- 20 Prove that if R is a commutative ring with unit element and M is an ideal of R, then M is a maximal ideal of $R \le R|M$ is a field.