(AUTONOMOUS) BA DEGREE EXAMINATION DECEMBER 2018

(First Semester)

Branch-ECONOMICS

MATHEMATICAL METHODS –I

Time:	Three Hours Maximum: 75 Marks
	SECTION-A (10 Marks)
•	Answer ALL questions
	ALL questions carry EQUAL marks $(10 \times 1 = 10)$
1	The distance of the point (3,-2) from the y-axis is
	(i) 2 (ii) -2
-	(iii) 3 (iv) $\sqrt{13}$
2	TDL
2	The radius of the circle $x^2+y^2=4$ is
	(i) 4 (ii) -4
	(iii) 2 (iv) -2
3.	The solution of the equation $4x+3=2x+5$ is
	(i) $x=1$ (ii) $x=2$
•	(iii) $x=4$ (iv) $x=\frac{1}{2}$
4	Demand is a function of price.
	(i) Constant (ii) Negative
	(iii) Positive (iv) None of these
5	The number of elements in a 2x3 matrix is
	(i) 5 (ii) 6 (iii) 3 (iv) 2
	(1) (11) (11) (11) 2
6	A is 4x matrix and B is 1x4 matrix then BA is a matrix
	(i) 1x1 (ii) 4x4 (iii) 1x4 (iv) 4x1
7	Onen model in matrix notarian is given by
.1	Open model in matrix notarian is given by
	(i) $X=AF+X$ (ii) $F=AF+X$
	(iii) $X=AX+F$ (iv) $A=AX+F$
8	Input-Output analysis is a technique which was invented by
	(i) Hawkins (ii) W.Leontief
	(iii) Both (i) and (ii) (iv) Neither (i) nor (ii)
9	The cofactor of an element is the minor of that element multiplied by
	(i) -1 (ii) $(-1)^i$ (iv) $(-1)^{i+j}$
	(iii) $(-1)^{j}$ (iv) $(-1)^{i+j}$
10	The rank of a non-singular matrix of order nxn is
	(i) less than n (ii) more than n
	(iii) 1 (iv) n
	SECTION - B (25 Marks)
	Answer ALL questions
	ALL questions carry EQUAL Marks $(5 \times 5 = 25)$
11 a	Calculate the distance between the following pairs of points:
1.1 0	(i) $(1,2)$ and $(3,4)$ (ii) $(6,-3)$ and $(-4,-2)$
	OR
b	Find the gradient and the intercept made by the following lines on the y-axis.
	That the gradient and the intercept made by the following lines on the y-ansatz
	(i) $\sqrt{3}x - y + 3 = 0$ (ii) x-y-6=0
12 a	Solve: $\frac{3x-7}{5} - \frac{3x+7}{4} = \frac{\sqrt{x}-9}{8} - \frac{3x+9}{6}$
	3 4 6 0
	OR
h	Solve: $x^2-16x+48=0$

13 a If
$$A = \begin{bmatrix} 3 \\ 0 \\ 5 \\ 1 \end{bmatrix}$$
, $B=\begin{bmatrix} 4 & 2 & -1 & 0 \end{bmatrix}$ Find AB and BA.

OR

b Find the value of the determinant

14 a Find the rank of the matrix

$$A = \begin{bmatrix} 1 & 3 & 4 & -2 \\ 2 & 6 & 8 & -4 \\ 3 & 0 & 3 & 3 \end{bmatrix}$$

OR

b Solve the set of equations 3x+4y=5 and 3x-4y=2 by Cramer's rule.

15 a Explain the technological coefficient matrix.

OR

b Verify the Hawkins-Simon conditions for [A]= $\begin{bmatrix} 0.8 & 0.2 \\ 0.9 & 0.7 \end{bmatrix}$

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 8 = 40)$

16 a The equation of the line is 3x-2y=6.

(i) Find whether the point (0,3) lies on the line.

(ii)Find the slope, x-intercept and the y-intercept of this line.

(iii) Find the equation of the line passing through (0,3) and perpendicular to the above line.

OR

b Find the equation of a circle which passes through the three points: (0,1), (5,1) and (2,-3).

17 a If
$$A = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$$
, find A^2 -5A+7I.

OR

b State all the eight properties of determinants.

18 a Obtain the inverse of matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}$$

OR

b Solve the following system of equations: x-2y+32=1; 3x-y+4z=3; 2x+y-2z=-1.

19 a State the limitations of Input-Output analysis.

OR

 $b \quad Given \ A = \begin{bmatrix} 0.1 & 0.3 & 0.1 \\ 0 & 0.2 & 0.2 \\ 0 & 0 & 0.3 \end{bmatrix} \ and \ final \ demands \ are \ F_1, \ F_2 \ and \ F_3. \ Find \ the$

output levels consistent with the mode. What will be the output levels if $F_1=20$, $F_2=0$ and $F_3=100$?

20 a Solve: (i) $(x-3)^2+(x-2)^2=1$

(ii)
$$\frac{x-2}{x-1} + \frac{x+2}{x+1} = 0$$
.

OR:

b One unit commodity A is produced by using 1 unit of land, 2 units of labour and 3 units of capital. For producing 1 unit of commodity B, 2 units of land, 3 units of labour and 1 unit of capital are required. For producing 1 unit of