TOTAL PAGES: 2 14CAP10

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MCA DEGREE EXAMINATION DECEMBER 2018

(Second Semester)

Branch - COMPUTER APPLICATIONS

MATHEMATICAL STRUCTURES

1017								
Time: Three Hours		Maximum: 75 Marks						
AL	Answer ALL questions L questions carry EQUAL mark	(5x15 = 75)						
1 a If A, B and C are any three sets, prove that A $u(B u C) = (A u B) u C$.								
b Prove that by Venn diagram An(BoC) = (AnB)u(AnC). c IfU = {1,2, 3,4, 5,6,7, 8,9} A = {1,3, 5}, B = {2, 4, 6, 8} and C = {2, 5, 10}								
Verify $(AnB)^c = A^c nB^c$. OR								
d If A = $\{1, 2, 3\}$, B = $\{3, 4\}$ and C = $\{4, 5, 6\}$ Find (i) Ax(BuC) (ii) Ax(B nC) (iii) (A xB) n(BxC) (8)								
e If $f: A \rightarrow B$ and $g: B \rightarrow C$ are two 1-1 and onto functions, prove that								
(i) g o f: A-> C is one to one onto and(ii) g o f is invertible								
2 a Solve by Gauss elimination and Gauss Jordan method : X + 2y + z = 3; $2x + 3y + 3z = 10$; $3x - y + 2z = 13OR$								
b Solve for x from $\cos x - xe^x = 0$ by iteration method.								
c Solve for a positive root of $x^3 - 4x + 1 = 0$ by Regula falsi method.								
Find the non-deg	enerate basic feasible solution fo	r the T.P						
(i) Northwest Corner Rule								
(ii) Least Cost method								
(iii) Vogel's approximation method								
	To Supply 10 20 5 7 10							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
From	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	14 7 i 0 40							
	3 12 5 19 50							
Demand	60 60 20 10							
OR								
b Describe the Difference between TP and Assignment problem								

b Describe the Difference between TP and Assignment problem. (3)

Solve the traveling salesman problem

14CAP10 Cont...

4 a Sta	4 a State Ford and Fulkerson's rule,											[2]
bІ	b Draw the network :											(5)
Γ	Activity :	I)	0	R		S	Г	,	U		
	Predecessor :		-	-		-	P,Q	P,1	R	0, R		
c (c Calculate earliest start, earliest finish, latest start and latest finish of											
each activity of the project and determine the critical path.										(8)		
	Activity :	1-2	1-3	1-5	2-3	2-4	3-4	3-5	3-6	4-6	5-6	
	Duration :	8	7	12	4	10	3	5	10	7	4	
				(OR							
d <u>/</u>	A project consis	<u>sts o</u>								nates (o	lay) :	(12)
	Activity :	1-2	1-3	1-4	2-5	2-6	3-6	4-7	5-7	-	_	
	to :	3	2	6	2	5	3	3	1	2	_	
	to:	15	14	30	8	17	15	27	7	8	-	
	(i) Draw th	6	5	12	5	11	6	9	4	5		
					hat th	o pro	loot w	11 ha	omn	latad i	n 77	
	(ii) What is days?	s the p	TOUAL	niity ti	nat m	e proj			Joint		11 27	
	days.											
e I	e Describe the basic difference between PERT & CPM.									(13)		
											~ /	
5 a Ex	xplain types of (Gram	nars,									(5)
1 -										(-)		
bE	b Explain operation on languages,									(5)		
c F	c Explain Regular languages										(5)	
U L	c Explain Regular languages. OR									(5)		
	d Find the DFA equivalent to the NFA for which the state table is given											
		1									U	(12)
	t											
				S		а		В				
				So		0		So, S,	,			
				s,		Q		s ₂				
				S_2	S	o, si, l	S_2	0				

e Define finite state automata.

(3)

Z-Z-Z

END

⁾