(5)

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018 (Third Semester)

Branch-CHEMISTRY

MOLECULAR SPECTROSCOPY & APPLICATIONS

MOLECULAR SPECTROSCOPY & APPLICATIONS			
Time: Three Hours Maximum: 75 Marks			
	Answer ALL questions		
	ALL questions carry EQUAL marks $(5x15 = 75)$)	
1	a Explain the term 'Transition Probability'.	(3)	
	b Discuss the different types of electronic transition.	(5)	
	c Explain the solvent effects in $n ext{-wit}^*$ and $n ext{-w} n^*$ transitions. OR	(7)	
	d Calculate the A max for the following molecules:	[6]	
	$0 = C - CH_3$		
	i) iii) O		
	e Write a short notes on absorption and intensity shifts.	(5)	
	f Discuss any four applications of UV - visible spectra to organic	(-)	
	compounds.	(4)	
2	a Explain the various factors influencing vibrational frequency,	(5)	
	b Define Fermi Resonance.	(3)	
	c Discuss the number of fundamental vibrations of H2O and C02		
	Molecules.	(7)	
	OR		
	d Explain stoke and antistoke lines.	(3)	
	e Bring out the differences between IR and Raman spectroscopy.	(5)	
3	a Define chemical shift.	(3)	
	b What are the factors influencing chemical shift?	(5)	
	c Give a detailed account of spin-spin interaction with an example. OR	(7)	
	d Explain Nuclear Overhauser effect.	(3)	
	e Write short notes on chemical shift reagents.	(5)	
	f Discuss the geminal and vicinal coupling with an example.	(7)	
4	4 a Explain the salient features of 'off-resonance decoupling'.	(5)	
	b How will you determine the structure of complexes of WF ₆ and	` /	
	structure of BOF ₄ ?	(5)	

Write short notes on '2D NMR'.

4 Co	ont	14CHP16 Cont
	Explain the basic principle of ¹³ C NMR spectra.	(5)
f D	Discuss the applications of NMR spectra in the structural determination of ASF3 and SO3.	
5 a Di	scuss the basic principle of ESR spectra.	(8)
	b Explain zero field splitting and Kramer's degeneracy with an ex OR	ample. (7)
c V	What is isomer shift?	(3)
d I	Explain the quadrupole splitting with an example.	(5)
eΓ	Discuss the applications of ESR spectra in structural determination of complexes [Fe(CN) ₅ NO] ³ ' and CuSiF ₆ . 6H ₂ 0.	(7)
	Z-Z-Z	END