14CHP15

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018

(Third Semester)

Branch - CHEMISTRY

<u>PHYSICALCHEMSTRY - III</u>		
Time,: Three HoursMaximum : 75 Marks		
Answer ALL questionsALL questions carry EQUAL marks $(5 \times 15 = 75)$		
1	 a Discuss the modified form of Lindemann theory, b Account on : (i) Transmission coefficient (ii) Isokinetic temperature c Account on : Autooxidation. 	(5) (6) (4)
	d Apply statistical thermodynamics to study ARR theory. e With Rice - Herzfeld mechanism, discuss the reaction mechanism of	(6)
	thermal decomposition of CH_3CHO . f Obtain rate constant for the reaction :	(6)
	$H_2 + Br_2 \longrightarrow 2$ HBr. with reaction mechanism	(3)
2	a Apply AAR theory to study the role of solvent in chemical reactions.b Explain Bronsted catalytic law.	(6) (5)
	c Discuss the relaxation theory in the study of fast reaction kinetics. OR	(4)
	d Discuss secondary salt effect and obtain Bronsted - Bjerrum equation. e Highlight the effects of substrate concentration and pH of the medium	(5)
	in the determination of reaction rate. f Compare the techniques of stopped flow method and of continuous	(4)
	flow method.	(5)
3	a What are hydrated electron? Mention its colour.	(2)
	b Mention the reactions taking place in radialysis of water.	(4)
	c Discuss Langmuir - Hinshelwood mechanism of surface reactions. OR	(9)
	d Differentiate physisorption from chemisorption.e Write the reaction mechanism for the photochemical formation of HC1	(4)
	for H_2 and Cl_2 molecules. f Highlight the importance of radiation chemistry in industry.	(5) (5)
4	a Compare microstate and macrostate.	(6)
	b The rotational constant of gaseous HC1 determined by microwave spectrum is 10.59 cm ¹ . Calculate the rotational partition function of	
	HClatlOOK c Evaluate the thermodynamic properties C_v and S from partition	(4)
	functions. OR	(5)
	d Derive the expression for the translational partition function. e Write the general equations for (i) partition function and (ii) entropy in	(6)
	terms of partition function.	(5)
	f Hint on Combination and Permutation laws.	(4)
5	a Explain with examples : Heat capacity of diatomic gases. b Obtain equilibrium constant from partition function.	(7)(5)