PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018 (Third Semester)

Branch - CHEMISTRY

PHYSICALCHEMSTRY - III

Ti	me : Three Hours Maximum : 75 Mark	
	Answer ALL questions ALL questions carry EQUAL marks $(5 \times 15 = 7)$	
1	 a Discuss the modified form of Lindemann theory. b Account on: (i) Transmission coefficient (ii) Isokinetic temperature c Account on: Autooxidation. 	(5) (6) (4)
	d Apply statistical thermodynamics to study ARR theory. e With Rice - Herzfeld mechanism, discuss the reaction mechanism of thermal decomposition of CH ₃ CHO.	(6)(6)
	f Obtain rate constant for the reaction: $H_2 + Br_2 \rightarrow 2$ HBr. with reaction mechanism	(3)
2	a Apply AAR theory to study the role of solvent in chemical reactions.b Explain Bronsted catalytic law.	(6) (5)
	c Discuss the relaxation theory in the study of fast reaction kinetics. OR	(4)
	d Discuss secondary salt effect and obtain Bronsted - Bjerrum equation. e Highlight the effects of substrate concentration and pH of the medium	(5)
	in the determination of reaction rate. f Compare the techniques of stopped flow method and of continuous	(4)
	flow method.	(5)
3	a What are hydrated electron? Mention its colour.	(2)
	b Mention the reactions taking place in radialysis of water.	(4)
	c Discuss Langmuir - Hinshelwood mechanism of surface reactions. OR	(9)
	d Differentiate physisorption from chemisorption. e Write the reaction mechanism for the photochemical formation of HC1	(4)
	for H ₂ and Cl ₂ molecules.	(5)
	f Highlight the importance of radiation chemistry in industry.	(5)
4	 a Compare microstate and macrostate. b The rotational constant of gaseous HC1 determined by microwave spectrum is 10.59 cm¹. Calculate the rotational partition function of HClatlOOK. 	(6)(4)
	c Evaluate the thermodynamic properties $C_{\rm v}$ and S from partition functions.	(5)
	OR	(>
	d Derive the expression for the translational partition function. e Write the general equations for (i) partition function and (ii) entropy in	(6)
	terms of partition function. f Hint on Combination and Permutation laws.	(5) (4)
5	a Explain with examples: Heat capacity of diatomic gases.	(7)
	b Obtain equilibrium constant from partition function. c Where is Fermi - Dirac statistics applied?	(5)
	1 1	\ /

OR