TOTAL PAGE: 1 14CHP07

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018 (Second Semester)

Branch- CHEMISTRY

PHYSICAL CHEMISTRY - II

Ti	me : Three Hours Maximum : 75 Marks	laximum : 75 Marks	
	Answer ALL questions ALL questions carry EQUAL marks $(5 \times 15 = 7)$	75)	
1	a Show that x and — operators do not commute each other. Give its $\frac{dx}{dx}$		
	significance.	(5)	
	b Derive the operators for linear momentum and energy. OR	'(10)	
	e State and explain IIermitian operators.	(5)	
	d Describe the essential postulates o quantum mechanics.	(10)	
2	a Derive the Schrodinger wave equation for particle in ID box and obtain the energies and normalized wave functions.	(10)	
	b Sketch and explain the radial wave functions. OR	(5)	
	c Apply quantum mechanics to H-atom problem and solve it to get eigen values, functions and quantum numbers.	(15)	
3	a Write the slater determinants for He atom.	(5)	
	b State and explain first order perturbation theory.	(5)	
	c Give the application of perturbation theory to He atom. OR	(5)	
	d State and explain variation method.	(5)	
	e Describe the salient features of I lucket MO theory and its application to benzene.	(10)	
4	a Obtain the matrix representations of symmetry operations.	(7)	
	b What are space groups? Give examples.	(4)	
	e Sketch and explain the symmetry elements and operations in water molecule.	(4)	
	OR d State and explain great orthogonality theory.	(5)	
	e Apply the great orthogonality theorem and construct the character table for C_{3v} point group.	(10)	
5	a Explain the symmetry based selection rules for IR and Raman spectra. (8))	
	b Determine the vibrational modes in II_20 using group theory. OR	(7)	

c Discuss the construction of hybrid orbitals of BF_3 and $NI4_3$ molecules