TOTAL PACT: 1 14CHP07

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018 (Second Semester)

Branch-CHEMISTRY

PHYSICAL CHEMISTRY - II

Ti	ime : Three Hours Maximum : 75 Marks	aximum : 75 Marks	
	Answer ALL questions ALL questions carry EQUAL marks (5 x 15 7	5)	
1 a Show that x and operators do not commute each other. Give its dx			
	significance.	(5)	
	b Derive the operators for linear momentum and energy. OR	(10)	
	e State and explain I lermitian operators.	(5)	
	d Describe the essential postulates o quantum mechanics.	(10)	
2	a Derive the Schrodinger wave equation for particle in ID box and obtain the energies and normalized wave functions.	(10)	
	b Sketch and explain the radial wave functions. OR	(5)	
	c Apply quantum mechanics to II-atom problem and solve it to get eigen values, functions and quantum numbers.	(15)	
3	a Write the slater determinants for He atom.	(5)	
	b State and explain first order perturbation theory. $\#$	(5)	
	c Give the application of perturbation theory to He atom. OR	(5)	
	d State and explain variation method.	(5)	
	e Describe the salient features of Ducket MO theory and its application to benzene.	(10)	
4	a Obtain the matrix representations of symmetry'operations.	(7)	
	b What arc space groups? Give examples.	(4)	
	c Sketch and explain the symmetry elements and operations in water molecule.	(4)	
	OR d State and explain great orthogonality theory.	(5)	
	c Apply the great orthogonality theorem and construct the character table for C_{3v} point group.	(TO)	
5	a Explain the symmetry.based selection rules for IR and Raman spectra. (8	5)	
	b Determine the vibrational modes in II_20 using group theory. OR	(7)	

c Discuss the construction of hybrid orbitals of BF_3 and NH_3 molecules $_{\mbox{lisino ornnn thpnrv}}$