PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018 (First Semester)

Branch - APPLIED ELECTRONICS

POWER ELECTRONICS

ime	: Three Hours	Maximum: 75 Marks
		N-A (10 Marks)
		ALL questions
	ALL questions	carry EQUAL marks $(10 \times 1 = 10)$
	An SCR is adevice.	
	(i) four layer, four junction	(ii) four layer, three junction
	(iii) four layer, two junction	(iv) three layer, single junction
	For a practical SCR, in the reverse blocking mode, the leakage current	
	(i) does not flow	(ii) flows from anode to cathode
	(iii) flows from cathode to anode	(iv) flows from gate to anode
}	A thyristor is turned off when the	anode current .
	(i) falls below the holding current (ii) falls below the latching current	
		nt (iv) rises above the latching current
ļ —	The load is commuted by transferring its load current to another incoming	
	thyristor is called communication method.	
	(i) class A or load	(ii) class B or resonant
	(iii) class C or complementary	(iv) class D or impulse
	AC voltage controller comverts	
	(i) fixed AC to fixed DC	(ii) variable AC to variable DC
	(iii) fixed AC to variable AC	(iv) variable AC to fixed AC
	In a AC voltage controller, pulse gating is suitable for	
	(i) R loads only	(ii) R and RL loads
	(iii) RL loads only	(iv) RC Loads
	The duty cycle of a chopper is given by	
	(i) T on / T off	(ii) T _{on} /T
	(iii) T / T on	$(iv) T_{0}^{n} ff / T_{on}$
	The load voltage of a chopper is controlled by varying the	
	(i) duty cycle	(ii) firing angle
	(iii) reactor position	(iv) extinction angle
	Single phase half bridge inverters require .	
	9 1	(ii) two wire DC supply
	(iii) three wire AC supply	(iv) three wire DC supply
	The output current wave of a single-phase full bridge inverter on RL load is	
	1 2 3 <u>m</u> e 74 27 e	

iii a triangular waye :v: constant de

SECTION - B (35 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 7 = 35)$

11 a Discuss about the operation and applications of a DIAC.

OR

- b Justi fy the advantages of Optoisolators in power electronic circuits,
- 12 a Show how does the impulse commutation is implemented in thyristors.

OR

- b State the advantages of external pulse commutation of thyristors,
- 13 a Illustrate the operation of a 3-phase AC switch.

OR

- b Explain the principle of phase control in AC voltage controllers,
- 14 a Classify the operations of one, two and four quadrant choppers.

OR

- b Discuss briefly about the operation of Switching mode regulators.
- 15 a Explain the functions of Single phase bridge inverters.

OR

b Sketch a block diagram to show the method of V / F control in AC drives.

SECTION - C (30 Marks!

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Elucidate the basic structure and operations of a GTO, sketch its two transistor model and mention any two applications.
- Differentiate the Load side and Line side Commutation of SCRs with diagrams.
- 18 Analyze the operation of a single phase cyclo converter.
- 19 Assess the functions of Buck and Boost regulator with block diagram.
- 20 Evaluate the operation of a three phase voltage source inverter.

Z-Z-Z END