14STU18

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Fifth Semester)

Branch - STATISTICSX

Time : Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks) Answer ALL questions ALL questions carry EQUAL marks

(10 x 2 = 20)

- 1 What are the different phases of OR?
- 2 What is the scope of OR?
- 3 Define Objective function.
- 4 Define Optimal Solution.
- 5 Define Primal Problem.
- 6 What is symmetric form and unsymmetric form in terms of vector?
- 7 What do you mean by unbalanced transportation problem?
- 8 Define degenerate basic feasible solution of a transportation problem.
- 9 Write down the mathematical formulation of assignment problem?
- 10 Difference between Transportation and Assignment problem?

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Explain the limitations of the graphical method of solving a LPP, OR

b Explain the principles of modelling.

12 a Explain the terms Slack variables. Surplus variable. Feasible Solution.

OR

- b Explain the use of Artificial variables in LPP.
- 13 a Explain the importance of integer programming problems and their applications.

OR

b Explain the relationship of the dual and primal problems.

14 a Describe a transportation problem and give a method of finding an initial feasible solution.

OR

- b Explain in brief with examples for North West Corner rule.
- 15 a Distinguish between transportation and assignment model.

OR

b Explain processing of n jobs to three machines in a sequencing problem.

SECTION - C (30 Marks)

Answer any **THREE** Questions **ALL** Questions Carry **EQUAL** Marks (3 x 10 = 30)

16 Solve the following LPP by the graphical method Max $z=3xi+2x_2$ stc., $-2x_1+x_2<1$ x]<2 $xi+x_2<3$ and $xi,x_2>0$ Page 2

14STU18 Cont...

17 Use two-phase Simplex method to solve

 $\begin{array}{c} Max \ Z-5xJ+8x2 \\ stc., \ 3xI+2x_2>3 \\ xJ+4x_2>4 \\ xI+x_2<5 \\ and \ xi,x_2>0 \end{array}$

- 18 Discuss the procedure of Gomory's constraint of solving integer programming problem.
- 19 Solve the following transportation problem to maximize profit

Profit (unit)

Destination

		А	В	С	D	Supply
	1	40	25	22	33	100
Source	2	44	35	30	30	30
	3	38	38	28	30	70
Demand		40	20	60	30	

20 Solve the assignment problem

Machines

		M!	M ₂	M ₃	М,
	h	5	7	11	6
Jobs	h	8	5	9	6
	h	4	7	10	7
	h	10	4	8	3

Z-Z-Z END