PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Fourth Semester)

Branch- STATISTICS

STATISTICAL INFERENCE -1

Time : Three Hours

Maximum : 75 Marks

SECTION-A (20 Marks!

Answer ALL questions ALL questions carry EQUAL marks (10x2 = 20)

- 1 State the Cramer-Rao inequality.
- 2 What is difference between estimator and estimate?
- 3 State Neyman's Factorization Theorem.
- 4 Mention any one application of Rao- block well theorem.
- 5 Define maximum likelihood estimation.
- 6 State the properties of MLE.
- 7 What do mean by interval estimation?
- 8 What do you mean by posterior distribution.
- 9 Define order statistics.
- 10 Provide any two limitations of non-parametric methods.

SECTION - B (25 Marks!

Answer ALL Questions ALL Questions Carry EQUAL Marks (5x5 = 25)

11 a Define the following terms and give one example for each(i) Unbaisedness and (ii) Efficiency.

OR

- b Show that if T is an unbiased estimator of 0, then T is a biased estimator of 0^2 .
- 12 a State and establish a sufficient condition for consistency of an estimator. OR
 - b Find the sufficient estimator for the parameter *X* of a Poisson distribution based on a random sample of size n.
- 13 a Briefly explain the method of moments.

OR

b Find the method of moment estimator of \mathbb{C} in population, given by $f(x, p) = e^{\cdot(x'e)}, x > 0.$

14 a X is distributed normally n = 10, x = 119 and S = 2.1. Construct a 99% confidence interval for the mean of the parent population.

OR

b Define standard error and explain its use.

15 a What is the use of median test? Explain the procedure briefly.

OR

b Give the step-by-step procedure uses in sign test.

Coot...

<u>SECTION - C (30 Marks)</u> Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- 16 Prove that for a random sample (xl, x2,, xn) of size n draw from a given large population (p, **a**), $S = -X_{n^{-1}-1}(xi-x)$ is not an unbiased estimator of the population cr².
- 17 State and prove Rao Blackwell theorem.
- 18 Find the MLE for the parameter P of the binomial distribution B(N, P), where N is very large but finite, on the basis of sample of size n. Also find its variance.
- 19 Obtain 100 (l-a)% confidence interval for c² when 0 is known in normal distribution.
- 20 Describe the chi-square test for goodness of fit.

Z-Z-Z END