PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Sixth Semester)

Branch - MATHEMATICS

ALGEBRA - II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

1 Compute (i)
$$\begin{pmatrix} 1 & 2 & \sqrt{2} \\ \sqrt{3} & 4 & 0 \end{pmatrix} + \begin{pmatrix} 4 & 1 & 2 \\ -\sqrt{3} & \sqrt[3]{5} & 7 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

- 2 Define symmetric and skew-symmetric matrices with examples.
- If V is a vector spice over F then prove that $\alpha = 0$ for $\alpha \in F$.
- 4 Prove that the kernel of a homomorphism on vector spaces is a subspace.
- If $U \subset W$, then prove that $A(U) \supset A(W)$.
- 6 Define an inner product space.
- 7 Define a row reduced echelon matrix.
- 8 Define the rank of a matrix.
- 9 Define right and left invertible.
- 10 Computer $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}^2$.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a If the matrix products AB and BC are defined, prove that (AB)C = A(BC).

OR

- b For any square matrix A of order n, $A(adj A) = (adj A) \dot{A} = (det A)I_n$.
- Define a linear span of a non empty subsets of the vector space V. Prove that L(S) is a subspace of V.

OR

- b If v_1, \dots, v_n are in V, prove that either they are linearly independent or some v_k is a linear combination of the preceding ones, v_1, \dots, v_{k-1} .
- 13 a If V is finite-dimensional and $v \neq 0 \in V$, then prove that there is an element $f \in V$ such that $f(v) \neq 0$.
 - b State and prove the Schwarz inequality.

Cont

14 a Determine the rank of the matrix.

$$\begin{pmatrix}
1 & -1 & 0 & 2 & 1 \\
3 & 1 & 1 & -1 & 2 \\
4 & 0 & 1 & 0 & 3 \\
9 & -1 & 2 & 3 & 7
\end{pmatrix}.$$

OR

- b Prove that the characteristic roots of a hermitian matrix are all real.
- 15 a If V is finite-dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.

OR

b In F_2 , prove that for any two elements A and B, $(AB - BA)^2$ is a scalar matrix.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Show that the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{pmatrix}$ satisfies the equation on $A^3 23A 40I = 0$. Hence computer A^{-1} .
- Prove that any two finite dimensional vector spaces over F of the same dimension are isomorphic.
- If V is a finite dimensional inner product space and W is a subspace of V, prove that $(W^{\perp})^{\perp} = W$.
- Verify the Cayley Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix}$. Hence compute A^{-1} .
- 20 a) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).
 - b) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, prove that λ is a root of the minimal polynomial of T.