PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Fifth Semester)

Branch - MATHEMATICS

REAL ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Prove that the set of all integers is countable.
- 2 Define: Metric Function.
- 3 State: Weierstrass theorem.
- 4 Define a Connected set.
- 5 Define: Cauchy sequence.
- 6 Define: Complete metric space.
- 7 Define: Continuous Function.
- 8 Define a bounded mapping of a set E into R^{K} .
- 9 Explain: Local maximum.
- 10 State: Mean Value Theorem.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Prove that every neighbourhood is an open set.

OR

- b Define Closure of E. If X is a metric space and ECX, prove that \overline{E} is closed.
- 12 a Prove that closed subsets of compact sets are compact.

OF

- b Let E be a set in R^K. If E is closed and bounded, prove that E is compact.
- 13 a If \overline{E} is the closure of a set E in a metric space X, prove that diam \overline{E} =diam E. OR
 - b If p>1, prove that $\sum_{p=1}^{\infty} \frac{1}{n^p}$ converges.
- Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Prove that f(E) is compact.

OR

- b Define discontinuity of the second kind and give an example.
- Suppose f is a real differentiable function on (a,b) and suppose $f^l(a) < \lambda < f^l(b)$. Then there is a point $x \in (a,b)$ such that $f^l(x) = \lambda$.

OR

b Let f be defined on (a, b). If f has a local maximum at a point $x \in (a,b)$ and if $f^{l}(x)$ exists, prove that $f^{l}(x)=0$.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- Let $\{E_n\}$, n=1,2,3,... be a sequence of countable sets and let $S = \bigcup_{n=1}^{\infty} E_n$. Prove that S is countable.
- 17 If p is a limit point of a set E, prove that every nhd of p contains infinitely many points of E.
- 18 State and prove root test of a series $\sum a_n$
- Let f be a continuous mapping of a compact metric space X into a metric space Y. Prove that f is uniformly continuous on X.
- State and prove Generalized Mean Value theorem.