PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Third Semester)

Branch - MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS AND FOURIER TRANSFORMS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

Find the differential equation of all spheres whose centres lie on the z-axis.

Solve
$$\frac{\partial^2 z}{\partial y^2} = \sin y$$

- Write the auxiliary equation of px+qy=z.
- Find the complete integral of p=2qx.
- 5 Define even and odd functions.
- 6 State Dirchelet's conditions.
- 7 State Fourier integral theorem.
- Find the theorem transform of $f(x)=e^{ikx}$, a < x < b=0, x < a and x > b
- 9 State Inversion formula for sine transform.
- Find fourier sine and cosine transforms of $f^{i}(x)$.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Solve
$$p^2+q^2=x+y$$

OR

b Solve
$$p(1+q^2)=q(z-1)$$

12 a Solve
$$(y^2+z^2)p$$
-xyq=-xz

OR

b Solve
$$(p^2+q^2)=z^2(x^2+y^2)$$

13 a Find a sine series for f(x)=c in the range 0 to π

OR

- b Expand πx $(0 < x < \pi)$ as a half range cosine series.
- 14 a State and prove Inversion theorem for complex fourier transform.

OR

b Find fourier cosine transform of
$$\frac{1}{a^2 + x^2}$$
.

15 a Find the finite fourier sine transforms of $f(x)=x^2$ in (0, 1)

b Solve
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 for x>0,t>0 given that

(i)
$$u(0,t) = 0$$
 for $t>0$

(ii)
$$u(x,0) = 1$$
 for $0 < x < 1$

0 for x>1

and (iii) u(x,t) is bounded.

SECTION - C (30 Marks)

Answer any THREE Questions

16 Solve
$$z = px + qy + \sqrt{1 + p^2 + q^2}$$

17 Solve
$$p^2+q^2-2px-2qy+1=0$$

Show that
$$x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$$
 in the interval $(-\pi \le x \le \pi)$

- Find the fourier transform of f(x) = 1 |x| if |x| < 1 and hence find the value of $\int_{0}^{\infty} \frac{\sin^4 t}{t^4} dt$
- Using finite fourier transform, solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ given u(0,t)=0 and u(4,t)=0 u(x,0)=2x where 0<x<4, t>0

Z-Z-Z

END