14MAU10

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Fourth Semester)

Branch - MATHEMATICS

MECHANICS – II (DYNAMICS)

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define speed and displacement.
- 2 Define triangle of velocity.
- 3 State angular velocity.
- 4 State Newton's first law of motion.
- 5 Define lines of Quickest descent.
- 6 Define momentum.
- 7 Define angle of projection.
- 8 Define impulsive force.
- 9 State central force.
- 10 Define velocities in a central orbit.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Find the component of a velocity along two given directions.

OR

- b State and prove triangle velocities of theorem.
- A particular slides without friction down an inclined plane and in the 4th second after starting passes over a distance of 1716.75 cm. Find the inclination of the plane to the horizon.

OR

- b Find the line of quickest descent from a given point p to a given circle in the same vertical plane.
- 13 a If the greatest height attained by the particle is a quarter of its range on the horizontal plane through the point of projection, find the angle of projection.

OR

- b If V_1 and V_2 be the velocity of a projectile at the ends of a focal chord of its path and U is the velocity at he vertex, prove that $V_1^{-2} + V_2^{-2} = U^{-2}$.
- 14 a A ball is thrown from a point on a smooth horizontal ground with a speed V at an angle α to the horizon. If e be the co-efficient of restitution, show that the total time for which the ball rebounds on the ground is $\frac{2v \sin \alpha}{g(1-e)}$.

- A ball of mass 8 gm moving with a velocity of 10 cm per second impinges directly on another of mass 24 gram moving out 2 cm per second in the same direction. If $e = \frac{1}{2}$, find the velocity after impact. Also calculate the loss in kinetic energy.
- 15 a Find moments of inertia A solid sphere about its diameter.
 - b Show that the moments of inertia of a triangular lamina of mass M about a side is $\frac{\mu h^2}{6}$ where h is the altitude from the opposite vertex.

SECTION - C (30 Marks) Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- To a man walking along a level road at 5 km/h, the rain appears to be beating into his face at 8 km/h at an angle 60° with the vertical. Find the true direction and velocity of the rain.
- 17 Find explanation and example of the first law.
- A particular is thrown over a triangle from one end of a horizontal base and grazing the vertex falls on the other end of the base. If A, B are the base angles and α the angle of projection, show that $\tan \alpha = \tan A + \tan B$.
- A smooth sphere of mass m₁ impinges directly with velocity u₁ on another smooth sphere of mass m₂ moving in the same direction with velocity u₂. If the coefficient of restitution is e, find the velocities after the impact.
- 20 State and prove parallel axes theorem.

Z-Z-Z

END