14MAU22

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Sixth Semester)

Branch - MATHEMATICS

GRAPH THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define a pendant vertex.
- 2 Define an Euler graph.
- 3 Define a spanning tree.
- 4 Define a rotted tree.
- 5 Define a planar graph.
- Write any two common properties in two graphs of kuratowski.
- 7 Define incidence matrix of a graph.
- 8 Define adjacency matrix of a graph.
- 9 Define simple diagraph.
- 10 Define a strongly connected digraph.

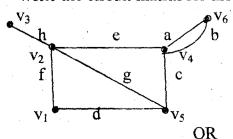
SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

- 11 a Define the following with an example:
 - (i) Isolated vertex
- (ii) Null graph.

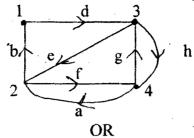
OR


- b Define isomorphic graphs with an example.
- Prove that there is one and only one path between every pair of vertices in a tree T.

OR

- b Define a rooted tree and binary tree.
- 13 a Write the various steps involved in reduction.

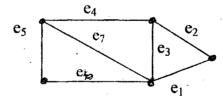
OR


- b Define homeomorphic graphs with an example.
- 14 a Write the circuit matrix for the following graph:

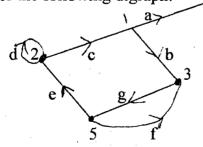
b

If B is a circuit matrix of a connected graph G with e edges and n vertices, prove that rank of B = e-n+1.

15 a Write Kirchhoff matrix for the following digraph.


b Explain digraph with an example.

SECTION - C (30 Marks)


Answer any **THREE** Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- 17 Prove that every tree has either one or two centers.
- Prove that a connected planar graph with n vertices and e edges has (e-n+z) regions.
- 19 i) Define a path matrix.
 - ii) Write the fundamental circuit matrix for the following graph:

Define the adjacency matrix of a digraph. Also write the adjacency matrix for the following digraph.

Z-Z-Z