PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Fifth Semester)

Branch - MATHEMATICS

ALGEBRA - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- Let $\sigma: S \to T$ and $\ell: T \to U$ then prove that $\sigma \circ \ell$ is one-to-one if each σ and e is one-to-one.
- 2 State the Associative Law.
- If ϕ is a homomorphism of G into \overline{G} then prove that $\phi(x^{-1}) = \phi(x)^{-1}$ for all $x \in G$.
- 4 Define normal subgroup.
- 5 Find which of the following are odd permutations?

(a) (1,2,4,6,7,8)

(b) (2,3,4,6,7,8,9)

6 Express the permutations as a product of disjoint cycles.

$$(i) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}$$

(ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$

- 7 State Pigeonhole principle.
- 8 Define Finite characteristic.
- 9 Define Prime element.
- 10 State unique factorization theorem

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a If H is a non empty finite subset of a group G and H is closed under multiplication, then PT H is a subset of G.

OR

- b Prove that the relation $a \equiv b \mod H$ is an equivalence relation.
- 12 a Prove that N is a normal subgroup of $G \Leftrightarrow gNg^{-1} = N$ for every $g \in G$.

OR

- b Prove that A subgroup N of G is a normal subgroup of $G \Leftrightarrow$ the product of two right cosets of N in G is again a right coset of N in G.
- 13 a Prove that every permutation is the product of its cycles.

OR

- b Let G be a group and ϕ an automorphism of G. If $a \in G$ of order O(a) > 0 then prove that $O(\phi(a)) = O(a)$
- 14 a If R is a ring, then you all $a, b \in R$ and R has a unit element 1, then
 - (i) (-a)(-b) = ab
 - (ii) (-1)a = -a
 - (iii)(-1)(-1)=1

OR

- b Prove that let F be any field then the only ideals of F are $\{0\}$ and F.
- Prove that let R be a Euclidean ring and $a, b \in R$. If $b \ne 0$ is not a unit in R then d(a) < d(ab)

Cont...

Prove that let R be a Euclidean ring. Suppose that for $a,b,c \in R$, a/bc but (a.b)=1 then a/c.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks (3 x 10 = 30)

- 16 If G is a group then prove that
 - (i) the identity element of G is unique.
 - (ii) Every $a \in G$ has a unique inverse in G
 - (iii) For every $a \in G, (a^{-1})^{-1} = a$
- If H and K are finite subgroup of G of order O(H) and O(K) respectively then prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$
- 18 State and prove Cayley's theorem.
- Prove that if U is an ideal of the ring R, the R/U is a ring and is a homomorphic image of R.
- Let R be a Euclidean ring then prove that any two elements a and b in R have greatest common divisor d. Moreover $d = \lambda a + \mu b$ some $\lambda, \mu \in R$.

Z-Z-Z

END