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Multiple linear regression model and application of F Statistics Part - 1
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Welcome once again. So we were discussing about multiple linear regression model in our
previous class and the example what we were talking about is child mortality rate (that was our
dependent variable) equals to beta 0 plus beta 1, female literacy rate, FLR and then beta 2 per
capita GNP plus ui. And this is a state level data.

So, in our last class we learnt how to estimate this multiple linear regression model and how to
interpret this beta 1 and beta 2. Once again I will just repeat. Once you estimate this beta 1 hat,
then the interpretation of beta 1 hat is basically, for unit change in FLR, child mortality rate
changes by beta 1 hat amount, keeping the impact of PGNP constant.



And we have also learnt how to keep the impact of PGNP constant in different steps and then we
saw that actually when we keep the impact of PGNP constant following several steps and when
we estimate the model at one go including all the variables, the magnitude of the beta hat turns

out to be the same. That is how we justified the multiple linear regression model interpretation.

So, today what we will do? We have also learnt previously the justification of FLR from the
point of view of omitted variable bias. So, that means even if our objective is to estimate the
impact of FLR only on child mortality rate, do I need to include PGNP also in the model? And
we said that yes, even if our objective is to estimate the impact of FLR on child mortality rate,

we should also include PGNP in the model so as to avoid omitted variable bias.

Now, with the same example and same data set, we will just see the severity of omitted variable
bias in an empirical set up. So, let us see the omitted variable bias. So, we will take the same
example. So, first what we will do? We will run the complete model which is given by CM and
then FLR and PGNP. This is our complete model. And what is the model of FLR on PGNP? The
coefficient of FLR is minus 2.231.

So, that means from the complete model, beta 1 hat equals to minus 2.231. Now, the next model,
what we are going to estimate is CM equals to beta0 plus betal FLR plus let us say ul. And from
this model, the estimated coefficient we will say betal tilde, as we have mentioned theoretically
also, we see what is the value of betal tilde and then we will examine whether betal tilde is
actually equals to betal hat or not. If they are equal, then we will say that there is no bias

involved, beta 1 tilde now we are going to estimate.

So, we will include only CM (child mortality rate) on FLR. So, that means we are not including
PGNP in the model. Now, we will see what is the coefficient? Coefficient is minus 2.39. So, we
can easily understand from this that betal hat, that means this implies betal hat is actually not
equals to betal tilde. It is 2.231, this is minus 2.39, that is increase in the value of the betal tilde.
So, that means there is a bias when we include, when we do not include the model, other relevant

variable in the model.

Similarly, what we can do? We will look at the estimate of PGNP also from the complete model,
what is the beta2 hat? So, beta2 hat from the complete model, beta2 hat equals to, that means
from PGNP is minus 0.005. And then, we will include, we will try to estimate beta2 tilde also



from the incomplete model and that shows, so we will include PGNP as explanatory variable and
what is the value? Minus 0.01. So, that means we can say that beta2 hat is not equal to beta2

tilde, rather than beta2 tilde becomes almost double.

So, with this example, we can understand the severity of this omitted variable bias when we do
not include an important variable, explanatory variable in the model. So, that means that gives
you the proper justification of multiple linear regression model. Even if our objective is to
estimate the impact of a particular variable in the model, we must include other relevant or
important variables as control in the model. Otherwise our model will suffer from omitted

variable bias and this example clearly demonstrate the severity of the omitted variable bias.
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Now, one more thing that also happens when we do not include, what happens to the goodness
of fit? So, from the complete model, betaO plus betal FLR plus beta2 PGNP plus ui. So, from the
complete model we will try to get the R square and we will call it as R square 1. So, what is the
R square value from the complete model, the goodness of fit? If we look at the complete model,

then we see the R square value is 0.7077.

And then, when we run the other 2 models, CM i equals to let us say beta0O plus betal FLR plus
ul, what is the R square value? Let us say this is called R square2, and then we will run this
model also, CM equals to beta0 plus betal PGNP plus u2 and we will call this R square as let us

say R square3. So, we will now report the R square2 and R square3 and we will see.

So, when we include only FLR in the model and then we see the R square value is 0.6696, this is
0.6696. And then when we include only PGNP in the model, then we get the R square value is
0.1662. Now, in a complete model, R square value is 0.7077, that means we can say that FLR
and PGNP, these two variables together, they can explain 70.77 percent variation in child
mortality rate. So, from this, what we can say that, FLR and PGNP together can explain 70.77

percent variation in child mortality rate.

Now, a natural question comes to our mind; out of these 70.77 percent explanation, how much of
this is explained by FLR and how much of this is explained by PGNP? So, one obviously would
tend to say that out of this 70.77, probably 66.96 percent is explained by FLR and remaining
would be PGNP. But if you look at, 70.77 minus 66.69 is not actually 16.62 percent.



So, that means we cannot actually allocate the R square among these two explanatory variables.
What I say? I will just repeat here. PGNP and FLR together can explain 70.77 percent variation
in child mortality rate because that is the R square from the complete model. Now, a natural
question comes to our mind. Out of this 70.77 percent, how much percentage of this R square is
due to FLR and how much of this R square is due to PGNP? Can we allocate this 70.77 percent

among these two variables?

So, if we would like to allocate these 70.77 among these two variables, so when we include FLR
in the model, then we see that 60.96 percent variation is explained by FLR itself. So, that means
70.77 percent minus this percentage should be explained by PGNP, but actually if we look at,
PGNP is explaining much more than that. So, that means we cannot say, we cannot actually, we
cannot, can we allocate R square which is 70.77 percent among the two explanatory variables?

The answer is actually no, we cannot.

Why this is no? Because you see, if you allocate 60.96 percent on FLR, then the remaining 70.77
minus this much should have been explained by PGNP, but PGNP is explaining much more than
that. So, that means it is actually not possible to allocate this R square. Why? Because of the
intercorrelation among the two explanatory variable, if you calculate this intercorrelation, among
these two you can see what is the intercorrelation between PGNP and FLR, you can easily

calculate that.

What is the command for that? corr PGNP and FLR if you give, then you see that 0.2685 is their
intercorrelation. Because of this intercorrelation, we cannot say how much percentage of this R
square is due to FLR and how much percentage of this R square is due to PGNP. That is one

thing we have to keep in mind.

But one thing what we observe that compared to the partial models, when we include one more
variable in the model, R square is actually increasing. So, whenever, let us say that this is our
initial model CM is the dependent variable and FLR is the independent one. And then R square is
0.6696. If we include PGNP also in the model, then the complete R square, complete model
gives R square equals to 70.77.

So, adding one extra variable is giving additional R square in the model. Similarly, when we

have only PGNP in the model, R square is 0.1662, however when we add FLR in the model, that



gives R square equals to 0.7077. Now, the question here that comes to our mind; can we compare
these two R square, that means can we compare R1 square and R2 square or R1 square and R3
square and say that R1 square is better, let us say this is our model 1, this is model 2, this is

model 3.

So, can we compare R1 square and R2 square or R1 square with R3 square and say that model 1
is actually greater than both model 2 and 3? This is a question; this is an interesting question. So,
compared to these 2 partial models, our complete model gives better R square. So, since
complete model gives better R square, when we compare 2 and 1, we see that there is some
change in the R square value, that means explanatory power of the model increases when we add

PGNP also in the model, because R square increases from 0.6696 to 0.7077.

Similarly, compared to 3 and 1, when we add FLR also in the model, R square increases from
0.1662 to 0.7077. Because of this comparison, can we say that model 1 is actually better than
model 2 and 3? What we are posing is can we compare R1 square with R2 square and R3
square? And say and decide which model is better than the other one? The answer is again no.
We cannot decide the suitability of a particular model based on only R square. What is the

reason? Let us try to explain that.
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So that means can we involve ourselves in a game, I will call it game, in a game of maximizing

R square? Apparently, it may look like we will keep on adding variables in the model as long as



our R square increases. So, we are basically trying to compare these two models, CMi equals to
beta0 plus betal FLR plus beta2 PGNP, let us say this is ui and then, the second model CM
equals to beta0 plus only betal FLR plus let us say uli. These are the 2 models we are

comparing.

So, if we add additional variable in the model, R square will definitely increase. Why this is so?
What is the measurement of R square? R square is basically ESS by TSS and this we can again
manipulate as TSS minus RSS and then divide it by TSS which is equals to 1 minus RSS by
TSS. And what is RSS? RSS as we know, summation of ui hat square divided by, what is TSS?

yi minus y bar whole square. This is basically our R square.

Now, when we add one extra variable in the model, what will happen to our ui hat square or
RSS? The residual sum of square will definitely decrease or at least, it will not increase. So, that
means when an additional, when an extra variable is added in the model, RSS which is actually

equals to summation ui hat square, RSS will decrease or at least it will not increase.

And what will happen to TSS? But, TSS remains unchanged. So, if the denominator remains
unchanged and the numerator decreases due to an additional variable in the model, what will
happen to R square? So, R square therefore, R square will increase when additional variable in
the model. So, we can say that R square is basically a non-decreasing function of any additional

or extra explanatory variable.

So, this says R square is a non-decreasing function of extra explanatory variable. So, this is the
thing that happens. When we add additional variable, explanatory power of the model increases,
R square will increase. But, does that mean that we will keep on adding variable in the model
and we will say that this model is better than this one because this gives higher R square value.
In this model R square equals to 0.70 and here it is R square equals to 0.66. We cannot say that

this model is better.

Why? Because this model involves, these two models, these two R square are not directly
comparable. Why this is so? Because in the first model, we have two explanatory variables while
in the second model, we have only one explanatory variable even though the dependent variable

of both the models are same, that is child mortality rate.



So, when two models involves different number of explanatory variable, how can you say that
this model is better than this? Yes, we are getting additional R square but in the process we are
also losing something. In this world nothing comes free of cost. So, that means a natural question
comes to our mind. This additional explanatory power comes with the cost of what? That is the

question.

So, the question that we would like to answer here, the incremental value in R square, what is the
cost of the increment in R square? This is an important question that I am asking. Is there any
cost involved? When we add one extra variable to experience little higher level of R square? The
cost is there and what is the cost? If we recall, every additional variable we include in our model,

we use extra degrees of freedom.

If we recall that if you include too many variables in the model, then the degrees of freedom,
based on which your betal hat, beta2 hat, these parameters are estimated, would be lesser and
lesser. And if you have too few observations freely moving to estimate your parameters, then the

reliability of the parameters comes down drastically.

So, that means the cost is in terms of, what is the cost? Cost is lower degrees of freedom based
on which, parameters are estimated. This is the cost. The more variable we add in the model,
lesser and lesser would be degrees of freedom in that model, based on which our parameters
betal hat, beta2 hat and so on, they are estimated. Lower the degrees of freedom, lower would be

reliability of the parameters.

So, that is one thing we keep, we have to keep in our mind. So, that means we need to give some
penalty to the R square measure while adding the additional variable in the model. And what is
the penalty that we give? The penalty that you have to give is the degrees of freedom. That
means we have to adjust this R square, that means the numerator and denominator with their
corresponding degrees of freedom. What is the degrees of freedom for this RSS as you know?

This is n minus k.

What is the degrees of freedom for the denominator? This is n minus 1. That means now from
this we can understand that since the numerator involves n minus k, as you include more
variables in the model, k will also increase. And as a result of which this numerator will also

come down, R square will also come down. That means R square will increase but not like the



previous cases. Earlier, it was increasing more but now I have adjusted the R square, that means

the denominator and the numerator both, by their corresponding degrees of freedom.

Since the denominator is not depending on the parameters, see here it is n minus k, so that means
it remains again unchanged. But the numerator, it is the degrees of freedom n minus k, more the
explanatory variable you add in the model, more would be the value of k, so that means n minus
k will decrease and that means that this summation ui hat square will come down. And that gives

some penalty on the addition of explanatory variable.



