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Welcome once again. So we were discussing about multiple linear regression model in our

previous class and the example what we were talking about is child mortality rate (that was our

dependent variable) equals to beta 0 plus beta 1, female literacy rate, FLR and then beta 2 per

capita GNP plus ui. And this is a state level data.

So, in our last class we learnt how to estimate this multiple linear regression model and how to

interpret this beta 1 and beta 2. Once again I will just repeat. Once you estimate this beta 1 hat,

then the interpretation of beta 1 hat is basically, for unit change in FLR, child mortality rate

changes by beta 1 hat amount, keeping the impact of PGNP constant.



And we have also learnt how to keep the impact of PGNP constant in different steps and then we

saw that actually when we keep the impact of PGNP constant following several steps and when

we estimate the model at one go including all the variables, the magnitude of the beta hat turns

out to be the same. That is how we justified the multiple linear regression model interpretation.

So, today what we will do? We have also learnt previously the justification of FLR from the

point of view of omitted variable bias. So, that means even if our objective is to estimate the

impact of FLR only on child mortality rate, do I need to include PGNP also in the model? And

we said that yes, even if our objective is to estimate the impact of FLR on child mortality rate,

we should also include PGNP in the model so as to avoid omitted variable bias.

Now, with the same example and same data set, we will just see the severity of omitted variable

bias in an empirical set up. So, let us see the omitted variable bias. So, we will take the same

example. So, first what we will do? We will run the complete model which is given by CM and

then FLR and PGNP. This is our complete model. And what is the model of FLR on PGNP? The

coefficient of FLR is minus 2.231.

So, that means from the complete model, beta 1 hat equals to minus 2.231. Now, the next model,

what we are going to estimate is CM equals to beta0 plus beta1 FLR plus let us say u1. And from

this model, the estimated coefficient we will say beta1 tilde, as we have mentioned theoretically

also, we see what is the value of beta1 tilde and then we will examine whether beta1 tilde is

actually equals to beta1 hat or not. If they are equal, then we will say that there is no bias

involved, beta 1 tilde now we are going to estimate.

So, we will include only CM (child mortality rate) on FLR. So, that means we are not including

PGNP in the model. Now, we will see what is the coefficient? Coefficient is minus 2.39. So, we

can easily understand from this that beta1 hat, that means this implies beta1 hat is actually not

equals to beta1 tilde. It is 2.231, this is minus 2.39, that is increase in the value of the beta1 tilde.

So, that means there is a bias when we include, when we do not include the model, other relevant

variable in the model.

Similarly, what we can do? We will look at the estimate of PGNP also from the complete model,

what is the beta2 hat? So, beta2 hat from the complete model, beta2 hat equals to, that means

from PGNP is minus 0.005. And then, we will include, we will try to estimate beta2 tilde also



from the incomplete model and that shows, so we will include PGNP as explanatory variable and

what is the value? Minus 0.01. So, that means we can say that beta2 hat is not equal to beta2

tilde, rather than beta2 tilde becomes almost double.

So, with this example, we can understand the severity of this omitted variable bias when we do

not include an important variable, explanatory variable in the model. So, that means that gives

you the proper justification of multiple linear regression model. Even if our objective is to

estimate the impact of a particular variable in the model, we must include other relevant or

important variables as control in the model. Otherwise our model will suffer from omitted

variable bias and this example clearly demonstrate the severity of the omitted variable bias.
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Now, one more thing that also happens when we do not include, what happens to the goodness

of fit? So, from the complete model, beta0 plus beta1 FLR plus beta2 PGNP plus ui. So, from the

complete model we will try to get the R square and we will call it as R square 1. So, what is the

R square value from the complete model, the goodness of fit? If we look at the complete model,

then we see the R square value is 0.7077.

And then, when we run the other 2 models, CM i equals to let us say beta0 plus beta1 FLR plus

u1, what is the R square value? Let us say this is called R square2, and then we will run this

model also, CM equals to beta0 plus beta1 PGNP plus u2 and we will call this R square as let us

say R square3. So, we will now report the R square2 and R square3 and we will see.

So, when we include only FLR in the model and then we see the R square value is 0.6696, this is

0.6696. And then when we include only PGNP in the model, then we get the R square value is

0.1662. Now, in a complete model, R square value is 0.7077, that means we can say that FLR

and PGNP, these two variables together, they can explain 70.77 percent variation in child

mortality rate. So, from this, what we can say that, FLR and PGNP together can explain 70.77

percent variation in child mortality rate.

Now, a natural question comes to our mind; out of these 70.77 percent explanation, how much of

this is explained by FLR and how much of this is explained by PGNP? So, one obviously would

tend to say that out of this 70.77, probably 66.96 percent is explained by FLR and remaining

would be PGNP. But if you look at, 70.77 minus 66.69 is not actually 16.62 percent.



So, that means we cannot actually allocate the R square among these two explanatory variables.

What I say? I will just repeat here. PGNP and FLR together can explain 70.77 percent variation

in child mortality rate because that is the R square from the complete model. Now, a natural

question comes to our mind. Out of this 70.77 percent, how much percentage of this R square is

due to FLR and how much of this R square is due to PGNP? Can we allocate this 70.77 percent

among these two variables?

So, if we would like to allocate these 70.77 among these two variables, so when we include FLR

in the model, then we see that 60.96 percent variation is explained by FLR itself. So, that means

70.77 percent minus this percentage should be explained by PGNP, but actually if we look at,

PGNP is explaining much more than that. So, that means we cannot say, we cannot actually, we

cannot, can we allocate R square which is 70.77 percent among the two explanatory variables?

The answer is actually no, we cannot.

Why this is no? Because you see, if you allocate 60.96 percent on FLR, then the remaining 70.77

minus this much should have been explained by PGNP, but PGNP is explaining much more than

that. So, that means it is actually not possible to allocate this R square. Why? Because of the

intercorrelation among the two explanatory variable, if you calculate this intercorrelation, among

these two you can see what is the intercorrelation between PGNP and FLR, you can easily

calculate that.

What is the command for that? corr PGNP and FLR if you give, then you see that 0.2685 is their

intercorrelation. Because of this intercorrelation, we cannot say how much percentage of this R

square is due to FLR and how much percentage of this R square is due to PGNP. That is one

thing we have to keep in mind.

But one thing what we observe that compared to the partial models, when we include one more

variable in the model, R square is actually increasing. So, whenever, let us say that this is our

initial model CM is the dependent variable and FLR is the independent one. And then R square is

0.6696. If we include PGNP also in the model, then the complete R square, complete model

gives R square equals to 70.77.

So, adding one extra variable is giving additional R square in the model. Similarly, when we

have only PGNP in the model, R square is 0.1662, however when we add FLR in the model, that



gives R square equals to 0.7077. Now, the question here that comes to our mind; can we compare

these two R square, that means can we compare R1 square and R2 square or R1 square and R3

square and say that R1 square is better, let us say this is our model 1, this is model 2, this is

model 3.

So, can we compare R1 square and R2 square or R1 square with R3 square and say that model 1

is actually greater than both model 2 and 3? This is a question; this is an interesting question. So,

compared to these 2 partial models, our complete model gives better R square. So, since

complete model gives better R square, when we compare 2 and 1, we see that there is some

change in the R square value, that means explanatory power of the model increases when we add

PGNP also in the model, because R square increases from 0.6696 to 0.7077.

Similarly, compared to 3 and 1, when we add FLR also in the model, R square increases from

0.1662 to 0.7077. Because of this comparison, can we say that model 1 is actually better than

model 2 and 3? What we are posing is can we compare R1 square with R2 square and R3

square? And say and decide which model is better than the other one? The answer is again no.

We cannot decide the suitability of a particular model based on only R square. What is the

reason? Let us try to explain that.
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So that means can we involve ourselves in a game, I will call it game, in a game of maximizing

R square? Apparently, it may look like we will keep on adding variables in the model as long as



our R square increases. So, we are basically trying to compare these two models, CMi equals to

beta0 plus beta1 FLR plus beta2 PGNP, let us say this is ui and then, the second model CM

equals to beta0 plus only beta1 FLR plus let us say u1i. These are the 2 models we are

comparing.

So, if we add additional variable in the model, R square will definitely increase. Why this is so?

What is the measurement of R square? R square is basically ESS by TSS and this we can again

manipulate as TSS minus RSS and then divide it by TSS which is equals to 1 minus RSS by

TSS. And what is RSS? RSS as we know, summation of ui hat square divided by, what is TSS?

yi minus y bar whole square. This is basically our R square.

Now, when we add one extra variable in the model, what will happen to our ui hat square or

RSS? The residual sum of square will definitely decrease or at least, it will not increase. So, that

means when an additional, when an extra variable is added in the model, RSS which is actually

equals to summation ui hat square, RSS will decrease or at least it will not increase.

And what will happen to TSS? But, TSS remains unchanged. So, if the denominator remains

unchanged and the numerator decreases due to an additional variable in the model, what will

happen to R square? So, R square therefore, R square will increase when additional variable in

the model. So, we can say that R square is basically a non-decreasing function of any additional

or extra explanatory variable.

So, this says R square is a non-decreasing function of extra explanatory variable. So, this is the

thing that happens. When we add additional variable, explanatory power of the model increases,

R square will increase. But, does that mean that we will keep on adding variable in the model

and we will say that this model is better than this one because this gives higher R square value.

In this model R square equals to 0.70 and here it is R square equals to 0.66. We cannot say that

this model is better.

Why? Because this model involves, these two models, these two R square are not directly

comparable. Why this is so? Because in the first model, we have two explanatory variables while

in the second model, we have only one explanatory variable even though the dependent variable

of both the models are same, that is child mortality rate.



So, when two models involves different number of explanatory variable, how can you say that

this model is better than this? Yes, we are getting additional R square but in the process we are

also losing something. In this world nothing comes free of cost. So, that means a natural question

comes to our mind. This additional explanatory power comes with the cost of what? That is the

question.

So, the question that we would like to answer here, the incremental value in R square, what is the

cost of the increment in R square? This is an important question that I am asking. Is there any

cost involved? When we add one extra variable to experience little higher level of R square? The

cost is there and what is the cost? If we recall, every additional variable we include in our model,

we use extra degrees of freedom.

If we recall that if you include too many variables in the model, then the degrees of freedom,

based on which your beta1 hat, beta2 hat, these parameters are estimated, would be lesser and

lesser. And if you have too few observations freely moving to estimate your parameters, then the

reliability of the parameters comes down drastically.

So, that means the cost is in terms of, what is the cost? Cost is lower degrees of freedom based

on which, parameters are estimated. This is the cost. The more variable we add in the model,

lesser and lesser would be degrees of freedom in that model, based on which our parameters

beta1 hat, beta2 hat and so on, they are estimated. Lower the degrees of freedom, lower would be

reliability of the parameters.

So, that is one thing we keep, we have to keep in our mind. So, that means we need to give some

penalty to the R square measure while adding the additional variable in the model. And what is

the penalty that we give? The penalty that you have to give is the degrees of freedom. That

means we have to adjust this R square, that means the numerator and denominator with their

corresponding degrees of freedom. What is the degrees of freedom for this RSS as you know?

This is n minus k.

What is the degrees of freedom for the denominator? This is n minus 1. That means now from

this we can understand that since the numerator involves n minus k, as you include more

variables in the model, k will also increase. And as a result of which this numerator will also

come down, R square will also come down. That means R square will increase but not like the



previous cases. Earlier, it was increasing more but now I have adjusted the R square, that means

the denominator and the numerator both, by their corresponding degrees of freedom.

Since the denominator is not depending on the parameters, see here it is n minus k, so that means

it remains again unchanged. But the numerator, it is the degrees of freedom n minus k, more the

explanatory variable you add in the model, more would be the value of k, so that means n minus

k will decrease and that means that this summation ui hat square will come down. And that gives

some penalty on the addition of explanatory variable.


