
Introduction to Econometrics
Professor Sabuj Kumar Mandal

Department of Humanities and Social Sciences
Indian Institute of Technology, Madras

Lecture 10
Classical Linear Regression Model Part-4

(Refer Slide Time: 00:22)

Our next assumption after autocorrelation is the assumption of multicollinearity. Let us say our

model is . So, basically multicollinearity says that

there should not be a high degree of correlation between any two variables. That means the

correlation between x1i and x2i or correlation between x1i and x31 or correlation between x2i and x3i

should be insignificant or very small. If it is high then we say that there is a presence of

multicollinearity. Collinearity means perfect linear relationship and multi means multiple like

perfect linear relationship between x1 and x2, x2 and x3 or x3 and xk.

So, that means we have perfect linear relationship and when number of such relationship is

multiple, it is linear multiple multicollinearity. For example, let us say consumption=f(α +β1

income + β2 wealth + ui). So, consumption function theory says that the consumption depends

not only on income but also on wealth and it is possible that income and wealth is highly

correlated among each other. If that is the case then we say that this particular data suffers from

multicollinearity problem and again in the presence of multicollinearity problem, the three

desirable properties of unbiasedness, efficiency and consistency may get disturbed.



So, these are the assumptions that we specify before we estimate the model using CLRM. After

maintaining this assumption we need to proceed for estimation and now we will try to

understand how we estimate a model and the technique that we apply to estimate the model.

Once again we can recap the assumptions. We say that firstly the model is linear and there should

not be any non-linearity in parameters. It might be linear in variable. The second assumption

says that when you specify the model then expectation of ui given xi is equal to 0 and ui follows a

normal distribution. The third assumption say that in the model we specify xi is fixed repeated

sampling. Assumption number 4 says that the covariance between xi and ui is 0. So, xi is strictly

exogenous in the model. The fifth assumption says there is no model misspecification either due

to improper functional form or due to inclusion of irrelevant variable or exclusion of any relevant

variable. The sixth assumption says that the total number of observations should be much-much

higher than the number of parameters to be estimated. The seventh assumption say that in your

model there should be enough variation in xi and yi. Assumption eight says that there should not

be any autocorrelation. Assumption nine says that there should not be any heteroscedasticity and

number 10 says that there should not be multicollinearity. But basically these are the assumption

in your textbook also you will see there are 10 such assumptions. I might have made some

mistake that is why my counting is coming 8. But there are actually 10 such assumptions. So,

once again we specify these assumptions.

Then the next step is how to estimate the model.
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So, I will try to make you understand about the estimation procedure with a simple diagram.

Once again this is xi and this is yi and this is your line. Let us, say this is my PRF which is given

by expectation of yi given xi and is equal to α + βxi and let us say this is your SRF so that means

this is the population regression function which we are trying to infer about because the true

population parameters alpha and beta are never known to us.

So, that is why this is the population regression function but we have estimated this SRF and this

is basically that we have estimated and is equal to . Now let us say for any given

value of xi this is my xi. What will happen if you draw a line? This is your yi and this yi is

actually your actual or observed yi. So, this yi indicates the actual yi. Let us say this is y1i and you

can write this is x1i. For a specific value of x1i your observed y is y1i. Let us say this is and

this is your yi -population regression function. This is your srf. So from this relationship I can

write that yi = + ui.

So, that means we can write . This is what you can write and ui is basically yi- .

That means in this technique we are trying to fit a line which is basically srf by drawing a

particular sample from the population. So that we can infer something about this prf and if you

draw multiple samples then you will get multiple such srf and our objective is to estimate the srf

in such a way that srf goes as close as possible towards this prf. This is what we are trying to



estimate. We specify a line once again- this is xi and this is yi. This is figure one. Let us say this

is figure 2. This is xi and this is yi. So, for any given value of xi you will get your predicted yi like

this. Your actual yi would be let us say this is y1i but this is your predicted value so that means

you will commit some mistake.

Let us say, this is u1i when x is x1i and then for the second one let us say this is x2i which is your

predicted but your actual may go here this is let us say y2i. So, that means this is u2i. Similarly for

x3i let us say, this is your actual y3i so that means this is your . So that means this becomes

your . This is , this is and this is . We will try to minimize this error. If you

minimize the sum of these errors then your srf will go as close as possible to the prf. You have

estimated a line and then you are trying to predict somebody’s consumption given his or her

income now. When you specify a given level of income, your model says that individual’s

consumption should be here on the line.

But the actual consumption is lower than this line. That means you are committing a mistake. Let

us say, that is for x1i and your model predicts the consumption here. But your actual

consumption is over the line. That means there also you are committing mistake. That means

some errors are positive and some errors are negative and our objective here is to minimize this

errors. The sum of is actually 0 because this srf line what we have discussed earlier is

basically an average line. So all these errors , are basically deviations from the average

line and the sum of deviation from the average or mean is actually 0. That is why summation of

is 0. We cannot actually minimize this rather we have to minimize summation of

because otherwise the positive errors will get cancelled out by the negative errors.

If you look here .So that means basically you are minimizing

and the control is that you are trying to minimize this with respect to α and β. To minimize you

have to differentiate this function. If you differentiate with respect to α, you will get one equation

and you have to set it equal to 0. By the rule of minimization or maximization, you have to



differentiate this again with respect to β. Let us assume that z = 𝞢 . So, basically

then minimization requires δz/δ which is equal to 0; and del z by del beta hat which is also equal

to 0. If you write these two then you will get two normal equations with two unknowns- and

. If you solve these two equations then you will get your which is equal to

. This is i running from 1 to n. This is your .

This particular technique what we have applied here is known as Ordinary Least Square method

or OLS in short. So, this is actually the meaning of estimation and this is what we actually do.

We minimize the sum of . Now, couple of things that we need to remember here.
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This is xi (along the x axis) and yi (along the y axis) and this is your line. Let us say that these are

all my error terms- , , and so on. When you are minimizing the summation

it is basically minimizing summation of + etc upto . This means I am giving

equal weightage to all the error terms. If you square it up, , and all these get equal

weightage. So, if you look at from the diagram some of the points are very close to your estimate

line which is why some predictions are very close towards the point towards the srf and some

predictions or some points or some errors are much away from the line.

So, obviously the lines which are closer to the line should get more weightage because these are

the points that actually contribute more towards constructing this lines and these are the points

which contributed less in constructing this point. But when I am minimizing it by taking

summation even though this point is much away from the line and contributed very less, when I

am squaring, it is getting more significance and more importance. So, while u5 actually should

get less weightage, because of our mechanism of OLS u5 hat square has actually more weightage

in this mechanism. So, that is some kind of limitation of this ordinary least square method that

we have to keep in mind. In ordinary least square method all these predicted error squares get

equal weightage while we should put more importance to the point which are closer to the line



and less to the error term which are far away to the line because those points contributed very

less in the construction of the line because this line is nothing but an average of your scatter plot.

If, you plot your x and y you will get a scatter plot like this and this line which is srf is actually

the average representation of the scatter plot and in that scatter plot the point which are closer

towards the line they should receive more importance and that is why lesser the error more

should be the weightage and higher the error less should be weightage but here it is happening

just opposite when I am squaring, more the error larger the weightage is the importance they are

giving. The limitation of this OLS method will be discussed in detail in later part of our

discussion when we discuss about weighted least square method. Limitation of OLS should be

overcome by the weighted least square method where we see that larger the deviation from the

line, those errors will receive lower weightage. This implies that the error terms errors which are

far away from the srf get more importance. This is the limitation of the OLS method. We will

overcome this using our weighted least square method.

So far we have learned what is basically the sample regression function, population regression

function, we are estimating and to predict about or to infer something about the true

population parameter α and β and that we are doing this using ordinary least square method

where we are just trying to minimize the sum of in that process.

Since we are putting equal weightage, we are committing some mistakes because larger the

deviation from the srf, we are giving higher importance because if we are squaring the errors

which are already larger in their magnitude getting magnified which ideally should not be the

case. So, with this we are closing our discussion today and tomorrow we will discuss something

about some important properties of your estimates and we will also take one data set and we

will see how to use the software statistical software to estimate the model that would become

very interesting.

Thank you.


