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Now that we have explored how to measure and present results on a single quantity – a measure 

on one entity in one place at one time, let’s move on to the next kind of common task, which is to 

compare the same quantity across multiple categories. In this section, we will largely focus on the 

simplest possible comparison the comparison between two categories. We may want to compare 

Peafowl train length between northern and southern India, for example, or compare chick feeding 

behaviour between male and female Magpie Robins or compare species richness between highly 

polluted and less polluted wetlands. 
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Depending on the situation and the study design, we measure multiple sampling units in each of 

these categories and so we end up with two sets of numbers, one for each category. Typically, our 

purpose is to estimate how different the two underlying populations are from each other. Our best 

guess or estimate of this is the difference in the sample means, but we need to pay careful attention 

to the study design. 

(Refer Slide Time: 01:23)   



 

We might have a study design that is matched or paired such that we measured, for example, the 

chick feeding rates of both individuals of a pair – male and female – or we found pairs of wetlands 

near each other – one highly polluted and other not – and then the resultant data are also paired. In 

this case, the quantity of interest is the mean difference within each pair, and so we first take the 

difference within a pair and then we average across pairs. 

𝑥̅𝐹−𝑀 =
∑(𝐹𝑖 − 𝑀𝑖)

𝑁
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The unpaired study design is perhaps a more common situation to be in. You run 40 transects in 

coffee plantations and 30 other transects in intact forest, and your purpose is to ask what is the 



difference in species richness between these two habitats. Or you follow 50 Red-vented Bulbuls 

and note how they spend their time over 10 minutes and do the same for 80 Red-whiskered Bulbuls, 

your purpose being to ask what extent the two species differ in the time they spend in, let’s say, 

aggressive behaviour. 

 

Now unlike the situation in paired data, here there is no requirement that the sample sizes be the 

same, as there is no one-to-one relationship between any of the data in the first group and the data 

in the second group. Therefore, unlike the paired situation, we cannot take differences within pairs 

and then average across pairs. Rather, we average across all data within each group and then 

examine the differences in the means of the two groups. 

𝑥̅𝐴 − 𝑥̅𝐵 =
∑𝐴𝑖

𝑁𝐴
−

∑𝐵𝑖

𝑁𝐵
 

Our goal is to calculate as best we can the true population difference in the means of the groups as 

estimated by the differences in the means of the samples we have collected from both these groups. 

 

So, now we have our estimate of the population difference. How precise is this estimate? 
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Answering this is pretty straightforward when your data are paired because you are dealing with 

just a single set of numbers: the differences within each pair. And so you can treat those numbers 

just as you did when you are estimating a single quantity, and you can go ahead and calculate the 

precision of your estimate in the way we have discussed earlier. We can do the usual thing – find 



the confidence interval by bootstrapping the original sample, drawing many samples with 

replacement again and again, looking at the distribution of bootstrap means, and finding the 

appropriate quantiles say for a 95% confidence interval. 

 

Or we can take our familiar shortcut – calculating the standard error of our estimate and finding 

the 95% confidence interval by using the multiplier 1.96 +/- the mean. 
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When the data are unpaired, things are a little different. Our measure of difference is the difference 

in the means of the two groups. We imagine this is one of many possible such differences that we 

could potentially have got. Using bootstrap, in each step you would re-sample A and separately 

re-sample B, calculate the means of each, subtract one mean from the other and store the difference 

of means. You do this many times, perhaps a thousand times or ten thousand times, and then 

examine the distribution of the differences in the means. That was bootstrap. 

 

We may instead want to use the properties of the normal distribution to find the confidence 

interval. We would then need to calculate the standard deviation of the distribution of possible 

differences. In other words, we need to know the standard error of the differences. The 

complication here is that the standard error cannot just be the standard deviation by the square root 

of the sample size, because there are two groups of data each with their own standard deviation 

and their own sample size.  



 

So, instead we need to calculate a combined or a pooled standard error. Now, the details of how to 

calculate a pool standard error are rather complicated and depend on whether the population 

variances of group A and group B can be assumed to be identical or not. For both these cases the 

separate formulas are on the slide, and also the corresponding degrees of freedom, which we know, 

of course, we need in order to look up the t distribution. 

 

You can pause the video and examine the formulas, but the main message I want to convey is that, 

as before, we want to ask about the distribution of possible sample means, or in this case difference 

in means, and to find out what the 95% conference interval is by identifying the central 95% of 

that distribution through taking the standard error and multiplying it with the appropriate number. 

 

If the sample size is large, that number would be 1.96, but if that sample size is low – below 30 

let’s say – that number would depend on the shape of the t distribution which in turn depends on 

the degrees of freedom.  
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So, far our main goal has been to estimate the magnitude of the difference and how confident we 

can be in this but in some cases, you might be most interested in whether the difference is positive 

or negative, and the magnitude is of secondary interest. Now, if our sample estimate is of the mean 

of A minus B to be  +3 then our best guess is that the difference is positive. In other words, A has 



a larger clutch size say than does B. But what degree of confidence do we have in this conclusion 

that A has a larger clutch size than B? 

 

Again, we need a distribution, which can be generated in two ways as we have spoken about many 

times by now – through bootstrap or by assuming a normal distribution. For paired data the 

distribution is that of possible mean differences, for unpaired data the distribution is of possible 

differences in the means. In both cases, we ask what proportion of possible sample outcomes fall 

above 0 -- that is differences are positive, A greater than B? And what proportion of possible 

sample means fall below 0 that is differences are negative, B greater than A? We can find this out 

by counting up what proportion of outcomes are below 0 in our bootstrap results. So, here's a 

distribution of 10000 bootstrap means of differences. By counting up how many of these are less 

than 0, we find that 1626 are negative. This means that 16.26% of the means of differences are 

negative. 
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Or we can do this from the properties of the normal distribution using a z table. In this example, 

the mean is one and the standard error is 0.7. So, the normal distribution corresponding to this 

would look like this (figure). What fraction of the area under such a normal distribution falls to the 

left of 0? We use our familiar formula to get the z score 

𝑍 =
0 − 1

0.7
= −1.4 



 and see that 0 is 1.4 standard errors to the left of the mean. So, that means now we have to look 

up a z table. 
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Here is an example of a z table, I know the numbers are small but there are two columns of 

numbers. The first is a z value or a series of z values, and the second is the area under the normal 

distribution to the left of that value. For example, we need to know the area to the left of a z score 

of -1.4 and the table tells us that this area is 0.08 or 8%. In other words, minus 1.40 is at the 0.08 

quantile.  

 

By contrast, if in the distribution of means the overall mean was below 0 such that the z score was 

actually +1.4, then the table would tell us that the area to the left of +1.4 is 0.919 or 91.9%. So, 

+1.40 lies at the 0.919 quantile.  
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So, now we know that in this distribution, 0 lies at the 0.08 quantile, in other words, it divides the 

lower 8% of the distribution from the upper 92% of the distribution. What this means that is that 

in our distribution of potential sample mean differences, 8% of those means are expected to be 

negative and 92% of those means are expected to be positive and this means that although our best 

guess is that the population mean is +1, and therefore the difference between A and B is positive, 

there is an 8% chance that we are wrong and that the true population mean is actually negative 

which is what happens when B is actually greater than A.  

 

So, if we conclude that the difference between A and B is positive (that is the population difference 

between A and B is positive) we estimate that the chance that this is a wrong conclusion is 8%. If 

that happens, then the error that we would be making is an error in sign where the sign of the 

difference is actually negative rather than positive. This is known as an error of type S where S 

stands for sign. 

 

In this case, the probability of committing type S error is 8% . Because the probability of type S 

error is small in this example, we perhaps are pretty confident in our conclusion that A is greater 

than B and the difference between A and B is positive. Now please note a potential confusion. 

Type S error is an error in the same way as we mean it in everyday language it denotes a mistake 

in our conclusion. This is different from the word error in ‘standard error’ which denotes variation 

or precision rather than mistake. I am sorry that the words are being used the different meanings; 



if it were up to me I would rename standard error to avoid this confusion, but we have to get used 

to the same words being used in different meanings.  
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So, that was one example. In another example, say the mean difference is 2 and the standard error 

is 2.5 and hence the sample mean is 0.8 standard errors above 0.  

𝑍 =
0 − 2

2.5
= −0.8 

What is the area to the left of 0 in this case? Looking up a z table again, we find that a z score of -

0.8 corresponds to the 0.21 quantile. So, the area to the left of -0.8 is 21% of the total. And 

therefore, if we conclude that the mean difference is positive, we run the risk of committing an 

error of type S with a probability of 0.21. And because that probability is very large we cannot be 

very confident in our conclusion. 
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We can go one step beyond and ask what is the relative probability that the true population 

difference is positive versus negative? We can do this by calculating what is known as the odds.  

The odds is the ratio between the two probabilities involved. For example 1, the area under the 

curve above 0 was 92% and the area below 0 was 8%. So, the corresponding probabilities are 0.92 

and 0.08. The ratio between these two is called the odds, and in this case it is 11.5. 

𝑜𝑑𝑑𝑠 =
0.92

0.8
= 11.5 

 And we can interpret this to mean that given the data we have, the true population difference 

between A and B is 11.5 times as likely to be positive as it is to be negative. So, there is a lot of 

evidence towards it being positive, that is towards the population difference being positive. 

(Refer Slide Time: 12:50)    



 

For example 2, we get an odds of 3.7  

𝑜𝑑𝑑𝑠 =
0.79

0.21
= 3.7 

which means that our evidence is only enough to say that the true population difference between 

A and B is a little over three times as likely to be positive than it is to be negative. So, when 

evaluating whether a difference in means is positive or negative it is useful to routinely calculate 

the probability of type S error and also the odds between positive and negative and make your 

conclusion based on this. 

 

By the way this can also be used when you are estimating a single quantity and want to compare 

that against some threshold, which we will see just now. 
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For example, say you want to find out whether the average number of eggs that pairs of Great 

Indian Bustards hatch is greater or less than the number of hatchlings needed to maintain the 

population at steady state. Now, I do not actually know what that number is, but suppose you know 

that given the mortality rate of bustards, for the population to be stable, each pair must hatch 1.9 

eggs per year. This would exactly balance birth and death, let’s say.  

 

So, you go to Rajasthan, you study bustard breeding and find that the average number of hatchlings 

in your sample of bustard pairs is 3 with a standard error of 1.2. Now remember that, if the true 

population average is above 1.9 hatchlings per pair, the population will increase but if it is below 

1.9, the population would decrease. What can we conclude about what will happen to the 

population? Our best guess is that the population will increase, because 3 is greater than 1.9. But 

we also know that there is such a thing as type S error. 

 

And because the standard error is 1.2 and therefore 1.9 lies 0.91 standard errors to the left of 3 

𝑍 =
1.9 − 3

1.2
= 0. −91 

 we can look up a z table and find that a z score of minus 0.91 corresponds to the 0.18 quantile 

which means that the probability of committing type S error is 18 percent and the odds between a 

true population mean of above 1.9 versus below 1.9 is 

𝑜𝑑𝑑𝑠 =
0.82

0.18
= 4.5 



And so we say that our best guess is that the true population number of hatchlings per pair is above 

1.9. But we are not all that confident about this -- we would be much happier if the odds were say 

20, so that the probability that the mean number of hatchlings per pair was above replacement rates 

was 20 times that of the probability that the real number – the true population number – is below 

replacement rate. So, our result is somewhat unsatisfactory. To avoid such a vague result in which 

you do not have much confidence, the one thing you can and must do is to make sure your study 

has sufficient precision, which if you remember from before, you can achieve through planning 

the study such that your sample size is large enough. 

 

And please always remember that although I am using the standard normal or z distribution in 

these examples, if the sample size is less than 30 it is really the t distribution that should be used 

and as we have talked about, unlike the z distribution, the properties of the t distribution depend 

on sample size, or more accurate accurately the degrees of freedom, which in this case would be 

the number of pairs minus 1. We subtract 1 from the sample size because we have taken up one 

degree of freedom in estimating the mean of the population in the number of hatchlings. 
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Let’s now move on to our final task, which is to assess the association between two numeric 

variables. We can do this if each entity that we sample has at least two variables measured. For 

example, we may have a number of plots within which we have measured canopy cover as well as 



number of bird species or we may have a number of individual birds, say Magpie Robins, for 

which we have measured both body size as well as territory size. 

 

We want to know whether there is an association between canopy cover and number of bird 

species, or between body size and territory size. In each case, we ask what relationship exists 

between the two variables. We usually should not and in fact cannot infer anything about cause 

and effect without a lot of further work. So, when I say association or  relationship or correlation, 

it is just describing the pattern and not implying anything about cause. 

 

Now visualizing these relationships is straightforward. We can draw scatter plots by spreading out 

one variable on the x axis and the other on the y axis and putting a circle or cross or other symbol 

representing each sampling unit in our data. And just like in the earlier part of this video, we would 

like to summarize this visual pattern in some way. For single variables, for example, we were 

interested in central tendency and we could use the mean or median. But for relationships between 

two variables, we are interested in a measure of association and the simplest measure of association 

is called the correlation coefficient (r). So we first identify the means of x and y indicated here by 

the vertical and horizontal lines. Then for each point on the graph, we take the deviation from the 

mean and then multiply the deviation in x with the deviation in y and sum up all of these. 

𝑟 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

(𝑁 − 1)𝑠𝑥𝑠𝑦
 

 

You may see that, if there is no relationship between x and y, then positive deviations in x will be 

associated sometimes with positive deviations in y and sometimes with negative deviations in y 

and the overall sum will therefore be near 0. By contrast, if there is an increasing relationship 

between y and x as shown here, then positive deviations in x will be associated with positive 

deviations in y and negative deviations in x will be associated with negative deviations in y. 

 

In both cases, because we are multiplying them, we will get large positive numbers. On the other 

hand, we do not have many examples of the converse situation where positive deviations in x are 

associated with negative deviations in y and vice versa. So, the overall sum of all these products 

will be a positive number. 



 

And if there is a decreasing relationship between y and x, then positive deviations in one variable 

will tend to be associated with negative deviations in the other and the overall sum will be negative. 

 

We also need to divide by the degrees of freedom. So, that we get the average of these joint 

deviations and we also divide by the product of the standard deviations of x and y in order to scale 

the correlation coefficient within specific bounds. So, what can we tell from the correlation 

coefficient? We can say something about the direction of the association – whether it is positive, 

negative or no association – and we can say something about the strength of the association – 

whether it is a tight association or loose. 

 

Remember as always, we are deriving the data and the scatter plot and the correlation coefficient 

by sampling from an underlying larger population. And we hope that the correlation we get in our 

sample is similar or close to the population correlation coefficient. So we denote the sample 

correlation coefficient by a Latin letter, in this case r, and the true population correlation coefficient 

by the Greek letter rho which I have not shown here. 

 

Now the correlation coefficient is fine for an initial look. It varies between -1 and +1. The sign of 

the correlation coefficient tells you the direction of the relationship, and the farther away from 0 

the correlation coefficient efficient is, the tighter the relationship. But the correlation coefficient 

has some limitations. Firstly, it measures only the linear or straight line relationship between the 

two variables. If the relationship is anything other than a straight line, the correlation coefficient 

is inadequate and in fact can be quite misleading. 
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You can see this from two examples, the points on the left are very tightly arranged and we might 

expect them to have a correlation coefficient of close to 0.99 but since the relationship is not a 

straight line the value is lower. The example on the right is more extreme, here y increases with x 

up to a point, and then decreases; but despite the very clear pattern, the correlation coefficient is 

near 0, which is of course because the correlation coefficient breaks down in situations like this. 
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Second consider these two relationships. Both have the same correlation coefficient, but in one 

case y increases rapidly as x increases and in the other case y barely increases at all as x increases. 

We often want to understand the magnitude of change of y with x -- for example do bird species 



increase greatly as forest patch size increases or only by a little; or do larger Magpie Robins have 

much bigger territories than small Magpie Robins or are their territories only slightly bigger? 

 

To assess this, we need to draw a line describing the relationship between y and x and examine the 

properties of that line. 
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The simplest line of course that we can draw to describe the relationship between two variables is 

a straight line. I have said earlier that it may not in fact be a straight line at all in real life, in the 

data that we have. But let us start with the simplest possible situation. You may have learned in 

mathematics that the equation of a line is  

𝑦 = 𝑚𝑥 + 𝑐 

 

where y and x are the two variables, m is the slope and c is the intercept. In statistics we use a 

slightly different formulation, placing the intercept before the slope and renaming it. So, we say  

𝑦 = 𝑎 + 𝑏𝑥 

Here, a is the intercept and b is the slope. Now as you know the intercept is the value of y when x 

is 0. You can substitute 0 for x in the equation and see that this is true. And b is the slope, which 

is the rate at which y increases for a unit increase in x. Let’s see if this is correct, we set a=0.5 and 

b=2. For x=1, y is then 2.5 and if we increase x by 1 unit from 1 to 2, y then becomes 4.5 which is 

2 units more than earlier and that is the slope. So, it works. 



 

Of course, neither a nor b is restricted to be a positive number. If a is negative it means that when 

x is 0, y is negative. And if b is negative, it means that as x increases, y decreases. And as before, 

please do not let this kind of language lead you to believe we are only talking about causal 

relationships between x and y. For these purposes here we are agnostic about cause and effect. We 

do not require that: we are only looking at the association between x and y.  
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So, now that we are familiar with the equation of a straight line, the question is: what equation best 

describes the relationship between y and x? There are an infinite number of lines that can be drawn; 

which one should we choose? The answer is that we need to define some criterion, evaluate all 

possible lines according to this criterion and then choose the one that fits best. So, what criterion 

should we follow? Now I am sure you can think of multiple possible criteria that could be used, 

but for now let’s imagine that our main purpose is to predict y values from x. 
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In other words, we want to draw a line such that if we know the say the body size of a Magpie 

Robin, we are able to come up with the best prediction for the size of its territory; and that 

prediction is the point on the line corresponding to that particular x value.  

 

We will not be able to predict perfectly, of course, because the actual y will usually be some 

distance from the predicted y, perhaps larger perhaps smaller than predicted. We can call this the 

deviation or error in the prediction. If the observed y is greater than predicted we get a positive 

deviation or error; if it is less than predicted we get a negative deviation or error. Now, whenever 

we predict we want to do that with the greatest overall accuracy. So, one possible criterion we can 

think of is to find the line that minimizes the sum of all deviations or errors. This makes sense, but 

we run up against a familiar problem which is that the sum of the positive deviations might balance 

out the sum of the negative deviations and this won’t  do; so we apply a familiar solution to this 

problem which is to square all the deviations so that all become positive, and their sum will always 

be 0 or greater. Now, our task is to find the line that minimizes the sum of square deviations also 

called SSD or the sum of squared errors which we can call SSE, but both mean the same thing. 

Now you can try out various combinations of intercept and slope, say a million combinations, and 

for each of them calculate the SSE and then find that intercept and slope which results in the 

smallest SSE. 

 



This is called a brute force approach, and as you can imagine, requires considerable computational 

power. Luckily, for a simple problem such as finding the equation of a line that minimizes SSE 

there is an analytical solution – meaning we can directly calculate the answer, rather than rather 

than having to explore lots of possibilities using a computer. I won’t  show you how to calculate 

the solution because you can easily look it up. 

 

But the point is that what we have now is called the regression line, which is the line that minimizes 

the sum of squared error and therefore is also called the least squares line. More generally, the 

procedure we have just followed is called regression, a term that you may have heard before. And 

so, from now on, we will call this assessment of the association between two variables, x and y, as 

regression analysis. 
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Let’s remind ourselves of some notation, and also bring up some terminology so that we can use 

it later. Although we do not assume cause and effect, typically, we put a possible causal variable 

on the x-axis and the outcome variable on the y-axis. Other terms used are independent or predictor 

variable for the x variable, and dependent or response variable for the y variable. Some of these 

words have a very causal connotation, but again, resist falling into that trap. The main thing is that 

we are trying to predict y from x whether or not the relationship between them is causal. 
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Now we can write an equation relating y to x. We use 𝑦̂ to denote predicted values of y. 𝑦̂ is 

described by the equation of a line and is equal to 

𝑦̂𝑖 = 𝑎 + 𝑏𝑥𝑖 

where a and b (that is, the intercept and slope) are estimated through the regression analysis. But 

of course, the individual y values deviate to some degree from the predicted line. So, we can say 

that the individual y values are the predicted values plus some error; and of course, because the 

individual values, the predictions, and the errors are different for each value of x, we can make 

this explicit by putting the subscript i for y, y hat, x, and e. The intercept and slope are not 

subscripted, because they apply to the entire relationship. In other words, if y and x are variables, 

a and b are called constants. 

 

Now, as we have discussed several times already, just as the sample mean is an estimate of the 

true population mean, here the sample intercept and slope are estimates of the true population 

intercept and slope.  
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Let me depict this visually. Say the scatter describes the entire population, and the entire population 

shows a mild positive relationship between y and x with a fair bit of scatter. Overlaid onto this is 

the true population regression, calculated as if we were all-knowing. But of course, we are not all-

knowing. So, from this population we sample 30 entities at random and then do the regression 

analysis, and find the regression line now in blue. 

 

Notice that the intercept and slope of the sample regression are not the same as that of the 

population regression. If we sampled a different 30 entities from the population at random then we 

get another pair of values for intercept and slope, again different from the population regression, 

and so it is with another sample of 30. So, this all is just to reiterate that the sample estimates may 

be our best guess for the population parameters, but they could be a close guess or they could be a 

poor guess; and this depends on the precision of our study, which in turn depends on the variability 

in the population and our sample size. 
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To illustrate this, above we have a population relationship with high variability -- we can also call 

it high scatter – and below is an example of low variability or low scatter. You can imagine that in 

the first case each set of samples can result in quite different regression lines shown in blue but in 

the second case the regression lines for different sets of samples are unlikely to be all that different 

from each other.  
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So, just as before we want to understand the precision of our estimates and in particular, we 

typically focus on the precision or the slope, because that is the quantity of interest in most cases, 

whereas the intercept is rarely of much significance in our analysis. Now, just as before, we want 



something like a 95% confidence interval for the sample slope such that we have an idea about the 

range within which the true population slope is likely to be. 

 

Again, just as earlier, we have two broad ways of arriving at such a confidence interval. We can 

make minimal assumptions and use a bootstrap method. In this case, we can resample the entities 

we have measured, with replacement, each time generating a data set of the same sample size as 

the original. And each time we calculate and store the intercept and slope of the regression line. 

We then find the 2.5% percentile and 97.5% percentile, and that interval is our 95% confidence 

interval because it contains 95% of the possible sample slopes. 

 

Or we can use the other method which assumes that the sample slopes follow a normal distribution 

– or a t distribution of course at low sample sizes. Then, as before, we need to find the standard 

error of the slope and multiply the standard error with some number – which is 1.96 when the 

sample size is greater than 30, and we can assume that the distribution of sample size slopes is 

normal – or that multiplier is something else (not 1.96) if the sample size is less than 30 and we 

need to use the t distribution instead. 

 

Now the standard error of a regression slope is not quite as easy to calculate as the standard error 

of the mean of a single variable and so I won’t  show it here. Suffice it to say for now that the 

software you use will give you the slope of the regression line as well as its standard error. Once 

you have that, we find the appropriate number to multiply with the standard error to give the 95% 

confidence interval around the slope. And just remember, if you use the t distribution, you have to 

calculate the degrees of freedom as sample size minus 2 

𝑑𝑓 = 𝑁 − 2 

because you have lost one degree of freedom in estimating the intercept and a second degree of 

freedom in estimating the slope.  

 

So now you have the confidence interval, and you can also go ahead and find out the probability 

of type S error – that is the probability that the true slope is in fact of the opposite sign than your 

best guess; and you can calculate the odds of the true slope being of the sign of your best guess 

rather than the opposite sign.  
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Now when visualizing a regression, you can imagine that you plot the response variable on the y 

axis and the predictor on the x as discussed earlier. This is called a scatterplot. On top of the 

scatterplot, you would overlay the regression line, and then in order to depict the uncertainty in the 

regression line it is common to show the 95% confidence interval in the intercept and slope which 

appears as the dark grey region over here. This gives a visual idea of the range of possibilities for 

what the true population regression might look like. So always be sure to plot the confidence 

interval and not only the regression line. 
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Now, one additional measure that you will often see accompanying regression results is something 

called 𝑅2. It is important that you know what it is, so let us find out. The variability in y (the 

quantity that we are trying to predict) can be described by different quantities of what are called 

“sums of squares”. Before you carry out any regression analysis, your best guess for the y value 

of any particular entity is simply the mean of y. So, the sum of the squared deviations of all the y's 

from their mean is called the total sum of squares.  

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − 𝑦̅)2

𝑖

 

Now, once we have carried out the regression, our best guess for the y value of a particular entity 

is the predicted y from the regression line. By how much do these predicted values differ from the 

mean? If we sum the squared difference between the predicted values and the mean of y, we call 

that the regression or explained sum of squares. 

𝑆𝑆𝑟𝑒𝑔 = ∑(𝑦̂𝑖 − 𝑦̅)2

𝑖

 

Finally, even after carrying out the regression, the predictions are not perfect, and the individual y 

values deviate from the predictions to some degree. The deviations from predicted are also called 

residuals or errors and the sum of the squared residuals is called the residual sum of squares or the 

error sum of squares.  

𝑆𝑆𝑒𝑟𝑟 = ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑖

 

 

 

Now, the interesting thing is that the total sum of squares is equal to the regression sum of squares 

plus the error sum of squares. 

𝑆𝑆𝑡𝑜𝑡 = 𝑆𝑆𝑟𝑒𝑔 + 𝑆𝑆𝑒𝑟𝑟 

 

From this it follows that the larger the regression sum of squares, the smaller the error sum of 

squares and if the error sum of squares is small it means that the points are close to the regression 

line. In this situation, the predictions are more accurate and the line fits the data better. So, if we 

were able to calculate the fraction: residual sum of squares divided by total sum of squares (𝑆𝑆𝑡𝑜𝑡), 

then the higher that number, the better the fit of the regression line. 



 

In practice, this is most easily calculated using the error sum of squares. So, if you divide the entire 

equation by the total sum of squares on both sides and rearrange the terms you will see that the 

quantity we want is equal to one minus the error sum of squares divided by the total sum of squares.  

𝑅2 = 1 −
𝑆𝑆𝑒𝑟𝑟

𝑆𝑆𝑡𝑜𝑡
 

This quantity is called the coefficient of determination or 𝑅2. 𝑅2 can range only from 0 to 1.  

 

Now if there were absolutely no relationship between y and x then the slope of the regression line 

would be 0 and the intercept would be the mean of y. So, the regression sum of squares would be 

0 and the error sum of squares would be the same as the total sum of squares (SStot), making the 

𝑅2 0. At the other extreme if all values of y fall exactly on the regression line then the error sum 

of squares would be 0 and the 𝑅2 would be 1. 

 

So this property means that the 𝑅2 can be interpreted as the proportion of variation in y explained 

by x. Recall that the slope does not tell you this, you can have two data sets with the same slope 

but with different scatter. So, the slope and the 𝑅2 together tell you about both the average rate of 

change of y with x as well as the proportion of variation in y explained by x. 

 

And as a small aside, it turns out that the 𝑅2 is actually just the square of our old friend the 

correlation coefficient. So, everything is related to one another. 
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It is now time to examine some of the key assumptions of regression analysis. The first and most 

important assumption is that of validity – that what you are measuring is meaningful to your 

research question. If you are interested in body size, is the best measure wing length or leg length 

or body mass or some combination of the three? Does the total number of species really measure 

the aspect that you are interested in, which is conservation value of a patch of habitat? If your 

measurement does not correspond relatively closely to what you care about in your research then 

no amount of fancy statistics can help. 

 

For further assumptions of regression, we need to look at the regression equation and divide it into 

two parts – what is called the deterministic or fixed part of the equation (𝑎 + 𝑏𝑥𝑖) and what is 

called the stochastic or random part of the equation (∊𝑖).  

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 +∊𝑖 

The deterministic part specifies how exactly we expect y to be related to x and the stochastic part 

tells us about the error or deviations or residuals -- all these three referring to the same thing.  

 

So the next most important assumption is about the deterministic part of the equation. The 

assumption is that y is indeed related to x in the manner specified. In a simple regression the 

relationship is a straight line. So, the assumption is that y is linearly related to x. This may seem 

reasonable to you, but consider that many variables of interest cannot go below 0 including number 

of species, population size, time spent on a particular activity and so on. On the other side, some 



measures cannot go above 1 or 100, like probabilities or percent of area under forest, or proportion 

of time spent foraging. And in other cases, we may expect a curved or saturating relationship like 

between the area of a forest and the number of species it hosts. This is likely to grow to a point 

and then stop. A more extreme example is when the slope of the relationship changes sign for 

example in the relationship between number of species and habitat disturbance: we often see the 

most species and places that have intermediate levels of disturbance. In all these cases, simple 

linear regression will be at best misleading, and at worst it will be utterly wrong. Now there are 

ways to identify and deal with all these sorts of situations but for now I want to encourage you to 

not simply assume that the relationship between y and x is linear but rather think about it carefully 

first and also make sure you plot the data to check for deviations from linearity. 

 

Lastly, we have some assumptions about the stochastic part of the regression equation. The 

assumptions are that the error or residuals are independent of one another and are drawn from a 

normal distribution with constant variance. These assumptions are particularly important when we 

want to use the shortcut method to calculate standard error and confidence intervals from the 

properties of the normal distribution or t distribution; but the assumptions about the stochastic part 

of the equation are less important if we use the bootstrap method to find the precision of our 

estimate.  
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Now there are many more aspects of regression that I would leave you to explore, including how 

to detect points that lie outside the main cluster of points, and therefore have a disproportionate 

effect on the results, and what to do them if anything should be done. I also leave you to explore 

more complicated regression models with more than one predictor variable including predictors 

that are categorical and not only numeric. 

 

But even while exploring these more complicated versions, keep in mind that most of the 

fundamental aspects discussed here remain the same. Remember that we are sampling from a 

population, and that our goal is to come up with some conclusion about the population parameter 

 

– and of course, that conclusion is meant to provide information needed to answer the research 

question we started with. 

 

Now having discussed visualization and analysis of single quantities comparisons as well as 

associations between two variables you may be wondering how one actually implements all these 

ways of visualizing and analyzing data. If you are serious about research and data analysis the one 

main piece of advice I would give you is to move away from using spreadsheet programs like excel 

and learn a statistical and programming language like R. All the graphs and analysis I have shown 

you in this video were done in R – it is one of the most powerful tools you can learn for all manner 

of graphics and analysis. And because it is not just a software for statistics and graphics but also a 

programming language, it is very flexible and you can implement just about any analysis that you 

want using R. 

 

There are many online resources through which you can learn R and I would say once you have a 

basic understanding of R, I would suggest you find and work through the free online book called 

R for data science. And if you manage to work through to the end of that book you will be very 

well placed to tackle any kind of graphical or analytical challenge that you may encounter in your 

research. 
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And finally going back to where we started this video, I wanted to say that although each of the 

different aspects of the research cycle we have spoken about are often treated separately with, for 

example, separate books on research design and separate books on statistical analysis,  in reality 

the different boxes here should not be thought of as independent of one another. Ideally you would 

view all the steps as a whole, and plan and design your study having thought about each step. 

 

For example, after framing your objective it is best to think about the tasks needed to be carried 

out to meet the objective. Then think about the design of the research -- for each task, imagine 

what kind of data you might collect, how you might visualize, analyze and interpret it, and then 

assess whether that will meet the objective. Plan out different combinations of tasks, different 

research designs, and different analyses, so that you can compare them and choose which best 

meets your overall need. Often, you might start by deciding that a particular kind of graph or 

comparison is what is needed to meet your objective, and from that starting point you might design 

your study. So, to summarize, before you actually embark on your study, it is useful to scribble 

out the entire process in a notebook, sketching out various possibilities and then deciding which 

to follow, making sure that you follow good practices in each of these steps, and that the logic has 

no flaws that you can see. In fact, it is a good idea to explain your plan to several friends and 

colleagues, and ask them to pick holes in it -- ask them to find problems in it. Better to identify 

opportunities, and even deficiencies, before you embark on your study, rather than have them 

pointed out to you after you have spent six months or three years on your work.  



 

So, this brings us to the end of a rather long lecture, if you are already familiar with many of these 

concepts. I hope this has been a useful refresher. If much of what I have said is new, do not expect 

it all to sink in immediately. You may have to watch this video multiple times, pausing here and 

there and sketching things out with pen and paper, or crunching numbers on a computer. 

Understanding data and dealing with it to extract the kinds of meaning we are looking for is not a 

simple task, nor does it come instinctively to most of us. 

 

But for much of our research in which quantitative analysis is a key element, it is worth trying to 

develop a sort of an intuition about numbers -- about basic mathematics, statistical inferences and 

data visualization. This will not come immediately or easily, but rather through a combination of 

reading and learning, as well as experience and handling data. And in the meantime, please try to 

resist the temptation of viewing data analysis as a recipe that can be followed from a textbook of 

statistics. Instead, while you carry out your analysis, try to understand every step of what you are 

doing well enough to feel it in your bones, so to speak. Now this is easier said than done, I know, 

but I hope that this lecture helps start you off on this journey.  

 

 


