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Welcome to a brief outline of research design. Here is a reminder of the generalized research cycle. 

After having thought carefully about the motivation underlying a study, we need to articulate a 

clear goal for the study that flows from the motivation. The goal in turn leads to one or more 

objectives, often phrased as questions. From those objectives are derived different tasks which 

might also be phrased as questions. 

 

If answering the task-level question is not possible through direct observation, we have to articulate 

one or more hypotheses from which we deduce observable predictions that can be tested through 

observation or experiment. Of course, if the phenomenon of interest is directly observable then 

hypotheses and the predictions are not needed. In this lecture, we will talk about the next phase, 

once we have determined what the key tasks are in order to meet the objectives. We then need to 

carefully design our studies such that we can learn as much as we can, 

 



and so that we can come to the strongest possible conclusion about the question that we are asking. 

Even if a study starts out with the most interesting and important questions, its success depends on 

the care and attention that you pay to the design of the study. Poor study design can lead to an 

inability to answer the original question or worse: to a confident but wrong conclusion. 
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Let’s start by sketching out a few different kinds of questions and the sorts of tasks they imply 

need to be done. We start simple and increase the complexity of.. complexity of the questions as 

we go along. If the task before us is to understand how many students are in this class, it is rather 

straightforward: all we need to do is to conduct a direct count. If we need to know how many 

people are employed at IIT Madras, things become a little more complicated. 

We need to define employment and whether it does or does not include contractual, temporary and 

part-time staff and then we need to find some means of counting them up. 

 

Answering the question - how many peafowl are in Bandipur tiger reserve, adds more complexity 

- it is impossible to count each peafowl one by one. And so we need to estimate the answer by 

sampling some fraction of the sanctuary perhaps through a technique like line transects,and then 

carefully extrapolating to the whole sanctuary. This is called an estimate, since we have no access 

to the true total number, but we hope that our study design and analysis brings us somewhere close 

to that true number. Estimates are always accompanied by a measure of uncertainty, a measure of 

how confident we are that our estimate is close to the true number. 



 

If we now need to know how peafowl populations are changing, we usually need multiple estimates 

of the population over time, and our measure of change over the years also comes with uncertainty. 

 

Asking why populations are changing now shifts us from the realm of description into the realm 

of explanation, and in this case, we are interested in cause and effect. Because processes are usually 

not observable, we would typically think of multiple possible hypotheses that might underlie the 

population change; derive predictions from each one and then collect information to see which 

predictions match with the evidence.  

An additional complication is that it is not necessary that only a single factor is the cause of 

population change - instead multiple factors can add act together. 

 

And finally in our list is a question that involves predicting or forecasting what might happen in 

the future, and this might require some explanatory or causal understanding plus some means of 

extending that understanding into the future.  

 

So, you can see that there is a range of complexity in the questions we may ask and therefore in 

the corresponding tasks as well. 
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Basic tasks in research usually fall into one or more of the following types. We may need to 

measure a single thing in a single place. For example, the number of bird species in a particular 

grassland. We devises a method to do so and come up with an estimate. Here it is 23 species. More 

often our need is to make a comparison. In this example we want to compare the number of species 

in burnt and unburnt grassland to see which category of category of grassland has more species 

and by how many. 

 Here we see that unburnt grassland has nine more species than does burnt grassland. There may 

be more than two categories to compare and they can be different kinds of comparisons, for 

example, from one time period to another. 

 

Another common task is to look for associations or correlations between two measures. In this 

example, we see that low fire frequency in a grassland corresponds to more bird species and higher 

fire frequency to fewer species. 

 

Now of course it is tempting to conclude from this that fire has the effect of reducing species 

richness but you know quite well that correlation does not necessarily imply causation. And so, 

the last kind of task I have listed here is causal analysis, where we are interested in understanding 

whether x affects y in a causal manner. Tackling this requires careful thinking and design which 

we will talk about later in this video. 
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When it comes to the actual design of a study, several questions need to be answered. First, what 

should be measured? Is it the number of species or the number of individuals of a particular species, 

or some aspect of the behaviour of individuals, and so on. 

 

Second, on what entities should these measurements be made? Number of species might be 

measured along a transect and number of individuals perhaps in a similar manner, but behaviour 

often needs to be measured on individuals,  

and so the sampling unit might be an individual bird. If you are measuring nesting success then 

nests would be your sampling units. 

 

Third, given that there are a large number of potential transects or possible individuals to measure 

or nests to monitor, how do you choose which ones to actually measure and across what scale in 

space and time should they be chosen from? And finally, we need to think of how many replicates 

we should have: 

 How many transects to walk, how many individual birds to follow, how many nests to monitor, 

and so on. To try and answer these questions in our study design, it helps to understand the main 

purposes of good study design. 
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In other words, what are we trying to achieve through good study design? Well, we want our result 

to actually answer the specific question we have posed. If we are not careful, we may end up 



answering something similar to but not quite what we need. We want our results to be 

generalizable, which means we want to be able to say something about the larger world not just 

the specific sampling units we have measured. We want to maximize the reliability of our answer 

which means that if the study is redone by ourselves or by others the result should not be very 

different. And finally, if the study is explanatory, we want to be able to conclude something about 

cause and effect and this requires additional effort. So, let’s look at these one by one to see what 

the implications are for the design of our studies. 

(Refer Slide Time: 08:04) 

 

Whether the results actually answer the specific research question depends on both what is 

measured and how it is measured. The main thing to ask ourselves when we decide what to measure 

is how closely that matches with what we need in order to answer the research question. For 

example, let’s say we want to compare two locations in terms of their conservation value for birds. 

We decide to measure the total species richness which is the total number of species. 

 

But, one can argue about whether this is a good measure of conservation value. Perhaps a better 

measure might be the number of endemic species or the number of threatened species or the 

number of habitat specialists. But then again is any kind of species richness actually giving us what 

we need? Perhaps population densities are more important, or demographic processes like survival 

and reproduction. 

 



You will see that there can be quite a gap between what we measure and what we might claim or 

want to conclude. Here is another example: say we want to understand the level of crop damage 

by parakeets in an area and we decide to ask farmers about whether their fields have suffered 

damage and by how much. There is again a possible gap between what we want and what we have 

measured since our results can only tell us about how much damage is reported,  and this could 

possibly be quite different from the damage that actually occurs. 

Next, let’s examine how we measure things. This can also limit the extent to which our results 

answer the actual question being asked. And in particular, we can think of various forms of 

measurement bias where the quantity we are interested in might consistently be over- or 

underestimated. An example of this is when we go out into the field and want to come up with an 

assessment of the relative abundance of different species,  but of course, the species we see most 

frequently and in larger numbers are not necessarily the ones that are the most abundant, because 

of differences among species in detectability. Some species might be large, colourful, active and 

loud, all of which bias our estimates of their abundance to the high side, compared with small 

cryptic species. So, our results might be completely off if we do not think about sources of 

measurement bias and attempt to account for them. 

 

The bias described in this example is obvious and well-known and so are the methods of correcting 

it but there are likely to be many biases that are more subtle and we need to work hard to uncover 

them and deal with them. 

 

Another source of bias is sampling bias. Let’s understand this through an example. Say we want 

to understand the time activity budget of a species, which is the proportion of time it spends in 

various activities like flying, foraging, resting, preening and so on.  

 We go out find an individual of the species, record what it is doing, and repeat this for many 

individuals. You can imagine that in many cases, birds that are more active are more likely to be 

found. And those perched quietly in a bush are less likely to be found. This means that our 

estimates of the time spent in active behaviour will be biased high compared with our estimates of 

the time spent in say resting or preening which in turn means that we have to think about ways of 

reducing or eliminating this bias. 
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 Our second requirement in designing studies is that the results can be extrapolated from the 

individual units we measure to some larger set. For example, we may walk five transects in 

Bandipur; but of course we want to conclude something about Bandipur as a whole not just those 

specific transects. Or we may measure the behaviour of 30 birds, but those specific individuals are 

important only to the extent that they allow us to generalize to a larger set, 

 say all birds of that species in that locality. 

 

So, if generalization from the specific sample to some larger set is important to us as it almost 

always is. Then the first thing to ask ourselves is what is that larger set? This is also called the 

population that we want to be able to generalize to do. We want to conclude something about the 

density of peafowl in Bandipur reserve as a whole or only a single forest range within Bandipur; 

or all of southern India. 

 

Similarly, are we interested in saying something about the behaviour of House Crows in Dehradun 

city specifically, or across the entire western Himalayan foothills. Once we have decided this, it 

should make sense to you that when we choose which entities to measure - be they transects or 

individual birds or anything else they should be representative of the larger set. In other words, 

sampling units must be chosen in a manner such that taken together they are representative of the 

larger sampling frame or population.  

 



So, how can we try and make sure that our sample is representative? In the absence of any 

particular strategy, people may take a haphazard sample or a convenience sample which is just a 

way of saying that the researcher measures whichever entity they encounter. But this may easily 

lead to biases, for example, we might sample only the most active individuals or lay transects in 

the most accessible terrain. 

 

Note that just wondering about sampling the first bird you see might be casually described as 

‘random’ but it is far from random in the technical sense. The formal definition of random for our 

purposes here is that whether we are talking about transects or birds or anything else, all sampling 

units have equal probability of being sampled, and that probability is independent of which other 

sampling units have been chosen.  

 So, the wandering-about method should be described as haphazard rather than random. 

 

How do we choose samples at random? Well, if we know all possible sampling units in our 

population, we can number them and then use a random number generator to select a subset of 

them to be measured. For example, using a map you could generate a complete list of possible one 

hectare squares in Bandipur and then choose at random among them, by which I mean truly random 

using a computer program. 

 

Or if there are 200 nesting trees of storks in my study area, I could number them all and use a 

random number generator to select say 50 of them at random. Although random sampling is often 

described as the best way to ensure representativeness this outcome is not guaranteed. It is true 

that when your sample size is large - that is if you are measuring large numbers of sampling units 

- then random samples are likely to be representative, . 

but when sample size is small then there is scope for trouble. You know for example that when 

you roll a die the probability of getting a six is one by six. But suppose you do not actually know 

this probability and instead you have to estimate it by rolling the die and counting up what happens. 

So, if you roll a die a thousand times and tally up how often you got a six that fraction will be 

roughly one in six times. But if you roll a die only 30 times then purely by chance you could get a 

result that is quite different from one by six. 



 I did it just now and I got a six only twice which means the fraction was 1 in 15, quite different 

from the true probability. And so, if I relied on that result my answer to the question what is the 

probability of getting six would be quite wrong. 

 

Similarly, if I had two species on a map like this in red and blue and selected only six individuals 

at random, I could very easily get four blues and two reds purely by chance and conclude that blues 

outnumbered reds by two to one. Or the converse - I could get 4 reds and 2 blues and conclude 

that the red is twice as abundant as blue when the truth is that they are actually equal in abundance 

in this example. So, what can we do to maximize the chance that our sample is representative? 

Here are some possibilities. Sometimes, you know that your largest set or population is composed 

of different kinds of entities with different properties these are called strata. 

 Examples of strata may be sex of birds (male and female) or age (juvenile and adult) or habitat 

type (riparian forest or dry deciduous forest) and so on. In such cases, you could stratify the 

population which means divide it up into these strata and then sample at random within each 

stratum. This ensures that the various importance strata are adequately represented and that you 

have not left them out by chance. 

 This strategy is called stratified random sampling. 

 

For example, over here it turns out that there are two distinct habitats - the top left is dry deciduous 

forest and the bottom right is moist deciduous forest. You can see that the red species is more 

abundant in the dry forest and the blue species is more abundant in the moist forest. But of course, 

you do not actually know that in advance. By ensuring that these underlying strata are separated, 

and then sampling within each stratum, you reduce the possibility of unrepresentative sampling 

purely by chance. 

 

When you do not know about underlying differences you might instead systematically divide your 

population into subunits. For example, you might overlay a grid over your study area and ensure 

that there is at least one sampling unit chosen, at random, within each grid cell and this strategy is 

called systematic random sampling. When considering the various options available to you, 

remember that the larger purpose is that the sample is representative of the population, such that 

your results are generalizable from sample to population. 



 

And finally, we need to think about whether our replicates provide us with information that is 

independent of other replicates. In many ways, the need for independence of replicates flows from 

the requirement that the sample be representative of the population, but I have listed it in its own 

point here since it is often discussed separately. 

 

Let us take an extreme example say you wanted to describe the length of the tail of peafowl 

properly called the train .You find one male and measure his train 10 times; the same male. 

 Then you take an average of these measurements and say that your sample size is 10. This is 

clearly absurd because although you can say something about that individual male with great 

precision. From the population point of view, generalizing from only one male is very risky. It is 

very clear that the 10 replicate measurements are not independent from one another and they are 

actually false replicates or pseudo-replicates.  

 

Whenever replicates are expected to be more similar to each other than the similarity expected in 

the population as a whole, they are called non-independent or pseudo-replicated. And this can 

happen if you want to generalize across individuals but actually take repeated measures on the 

same individuals as in the peafowl example; or if you want to generalize, let’s say chick growth 

across nests, but treat multiple chicks in the same nest as independent of each other or if you want 

to generalize across ponds, but treat multiple measures within each pond as independent replicates. 

 

Here is an example of how you can easily be misled by pseudo-replication. Say you are interested 

in the effect of timber extraction on bird species richness. You have two forest patches one that 

has been logged and one that has experienced no logging. In each forest patch, you conduct 30 

point counts where the points are carefully laid out through a stratified random design. So, at the 

end of your study you have 30 data points in each from which you can see whether logged forests 

are different from unlogged forests in their bird species richness. 

 

But actually, no, you have only two forest patches A and B. nd in your conclusion you can say 

something about the average difference between A and B, but these are the only examples of 

logged and unlogged forests in your data set. If you wanted to come to a conclusion about logged 



and unlogged forests in general, then your data are highly pseudo-replicated. In actual fact you 

have only one logged forest patch and one unlogged forest patch. 

 This is not to say you should not carry out such studies just that you have to be very cautious 

about what you conclude based on the degree of generalization that is possible from your study 

design. 
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Similarly, if you want to study how bird species richness changes with elevation in the western 

Himalaya, you might take a kind of a transect in Uttarakhand from say Corbett at 350 metres above 

sea level to Mandal at 1500 meters to Tungnath at 3500 meters. And at each of these sites, you 

could have 20 plots where you record species richness. But although this seems like a lot of 

information, if your purpose is to make a statement about the western Himalaya as a whole you 

actually have only one site at each of the three elevations.  

 

So, although you might be able to contrast Corbett, Mandal and Tungnath with considerable 

confidence, it would be rather risky to generalize to the western Himalayas as a whole: for that 

purpose the replicates are non-independent. 
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On to the next purpose of good study design,: we want our studies to be reliable which means that 

if someone, including you, were to repeat your study again the result should not be very different 

from what you originally found. We ideally want our answer to be as close as possible to the truth 

- specifically, the estimate you get from your sample should be close to the true measure for the 

population from which you have sampled and that you wish to generalize to. 

 

The tricky thing is that because in most cases you will never be able to measure the whole 

population the truth is unknown and we have to use all our wits to try and get as close as possible 

to it. For example, say the average length of a peacock train in a population of peacocks in Delhi 

is 130 centimeters. This by the way is actually unknown and also unknowable because no one will 

ever be able to measure all the peacocks 

 

in Delhi. But if we sample in a representative and unbiased manner, as discussed earlier, then as 

we keep measuring more and more peacocks our estimated mean should get closer and closer to 

the true population value. So, for any study, a researcher has to estimate and present also the 

precision of the result. In practice it is the uncertainty (that is the inverse of precision) that is 

estimated and presented. 

 

For example, I might sample peacocks in Delhi and estimate a mean train length of 126 centimeters 

with an uncertainty of plus minus 20 centimeters. The uncertainty tells us how confident we are 



that this estimate of 126 centimeters is close to the true value, assuming an unbiased sample. In 

this case, the confidence is rather low the data we have collected is consistent with a true mean 

train length of as low as 106 centimeters as well as as high as 146 centimeters - quite a wide span. 

 

And remember that although I have marked in the graph where the population mean lies, in reality, 

we do not know where it is. All we know is what the data tell us and from this our best guess is 

that it is somewhere between 106 and 146. By contrast say the uncertainty was plus minus 5 

centimeters then we conclude that the true value is likely to be somewhere between 121 

centimeters and 131 centimeters, which is a much better situation to be in since the uncertainty in 

the true value is quite low. 

 

Again, do remember that we do not actually know the true value but rather are trying to estimate 

it as best we can and in this case, because we have low uncertainty, we have been able to estimate 

it much better than in the earlier example. 

(Refer Slide Time: 25:23) 

 

This leads us to the following question - what affects our measure of precision, or its inverse, 

uncertainty? Firstly, it depends on how variable the population is. At one extreme, if all peacocks 

had a train length of exactly 130 then all we might need to do is measure one individual and we 

have our answer. If there was a little variability say train lengths were all between 125 and 135 



centimeters then even if we measured only 5 or 10 peacocks, we should still not be far from the 

correct answer. 

 

At the other extreme, if train lengths were highly variable say between 80 centimeters and 180 

centimeters; then you can imagine that by measuring only a handful of individuals we could get 

an answer that purely by chance is very far from the truth. The amount of variability in the 

population is just a part of the phenomenon we are studying we have no control over it. This brings 

us to the second point. 

 

Although we have no control over the variability in the population, we do have control over our 

sample size - in this case, the number of individuals we measure. For a given amount of population 

variability as we increase the sample size, we increase the precision and decrease the uncertainty. 

If you imagine taking more and more samples and calculating a running mean as you go, you will 

see that the estimate at the start can be quite far from the population mean. 

 

But as you accumulate more samples and move to the right on this graph. The sample mean will 

converge on the population mean assuming, no measurement bias or sampling bias of course. This 

example here is for a population of peacocks with high variability - with train lengths varying from 

80 to 180 centimeters. And as you can see even after reaching a sample size of about 100 the mean 

continues to change a bit with each additional sample.  

 

So, even with a relatively large sample size there is some uncertainty in our estimate. By contrast 

when there is very little variation in the population, with train lengths varying only between 125 

and 135 centimeters, then just a handful of samples are enough for the sample mean to stabilize 

very near the population mean, and we can reach a conclusion about the population mean with 

high precision, that is, with low uncertainty. 
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Uncertainty is therefore directly proportional to population variability and inversely proportional 

to sample size. So if you know the population variability - normally estimated by the variability in 

your sample -  and if you know the sample size, you can calculate what the resultant uncertainty 

in your study will be. Rearranging terms, you can decide to aim for a particular level of uncertainty, 

and then calculate what sample size you need to get there. 

 

This is usually an important part of planning a study, you collect some pilot data to estimate the 

population variability ,decide what precision you need - is plus minus 20 okay or do you need plus 

minus 5 for your purpose  - and then calculate the needed sample size to get there. We won’t talk 

about the actual calculations at the moment, but for now if you intuitively understand the 

relationship between these three aspects, that is excellent. 
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Two further things to say about uncertainty, As mentioned before population variability is out of 

your control but actually measurement error also adds to it. So, if you estimate peacock train length 

by eye -  that is just by looking at it - then the large measurement error, in doing so, will add on to 

the population variability. And so, to achieve a particular degree of precision you will need a larger 

sample size compared with if you measure train length with a measuring tape or some other more 

precise method. 

 

This is separate from the possible bias in visual estimation: if you tend to overestimate train length 

when viewing by eye then with large sample size the estimate might be quite precise but it will be 

biased too high. The precision means that if you carry out the study again with a new sample of 

peacocks you will get a very similar answer. But, any bias will mean that that answer would still 

be quite far from the true population mean. 

 

The second point to add here is that considerations of precision and its relationship to population 

variability and sample size have implications not just for overall sample size but also for how to 

allocate sample size across strata. If some strata are more variable than others then we need to 

sample them more. 

 

Say we want to calculate overall peafowl densities but know that there are two habitats - forests 

and urban parks.  



In the absence of any further information, we might sample by area. If forests account for 30% of 

the area and parks cover 70% of the area, then we could quite reasonably place 30% of our 

transaction forest and 70% in parks. But ideally, we would conduct a pilot study to understand 

variability. And if it turns out that peafowl density is more variable in forests than in parks then 

our calculations might lead us to place more transects in forests and fewer in parks. Clearly, there 

are lots to think about when it comes to trying to maximize the reliability of our studies. 
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A fourth possible purpose of good study design is to understand cause and effect. This is relevant 

for studies that are not about just describing patterns, but attempt to understand the underlying 

processes or mechanisms that lead to the patterns we see. Not all studies aim to do this, but it is 

interesting that even studies that say that they are simply describing patterns tend to begin to use 

causal language in the discussion section of the resultant article sometimes even in the abstract or 

title.  

 

Clearly, it is a human trait to seek explanations for the things we see around us. Unfortunately, as 

we know well, understanding cause is not merely a matter of observing whether there is an 

association between two measures. For example, the State of India's Birds report shows that the 

abundance of peafowl has increased over the past 20 years. At the same time, we know that the 

human population has also increased. But I do not think anyone would claim that peafowl have 



increased because humans have increased, or indeed the other way around. So clearly, we need to 

do more to understand cause and effect. 
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Let’s look at two kinds of situations in which we want to infer cause. The first is where an 

experiment is possible. Experiments are often considered to yield the best possible evidence for 

inferring cause and effect. You will have heard of RCTs or Randomized Controlled Trials referred 

to as the gold standard of evidence in various fields of science. A straightforward example is in 

clinical trials, let’s say to test the efficacy of a potential Covid vaccine. 

 

Here, we may inject one group of people with a potential vaccine, and also have another group of 

similar people who do not receive the vaccine; and then see what fraction of each group contracts 

Covid. If the vaccine is effective then a smaller fraction of those who receive the vaccine should 

contract Covid, compared with those who did not receive the vaccine. Now of course conducting 

an experiment is not quite as simple as that.  So, let us look at some of the key aspects that we need 

to consider. 

 

First, experiments typically involve a comparison between two categories - sometimes called a 

treatment and a control. But the comparison can be across multiple treatments instead. So, it is best 

to think of a control as just a special type of treatment. The treatments should differ only in the 

specific aspect that we are interested in.  



 

In the Covid vaccine example, we do not want the control to consist of people who have not been 

injected at all because we know that the very act of being injected, no matter with what substance, 

can alter a person's physiology and immune system and this is one example of what is called the 

placebo effect. And instead, by injecting people in both groups ,one with a vaccine and the other 

with something neutral like saline, we allow ourselves to infer that any resultant differences 

between the groups are the result of the vaccine specifically and cannot be attributed to anything 

else. Next, we have to worry about how to allocate subjects to treatments. In this case, how do we 

distribute the volunteers in the clinical trial between vaccine and non-vaccine groups - which are 

the two arms of the experiment. While doing this we want to ensure that the two groups do not 

have any pre-existing differences on average between them. 

 

For example, if we leave it up to the subjects to decide which group they want to be in, perhaps 

those more at risk for contracting Covid might prefer to be in the treatment group and then the 

resultant infection rates may be related more to those risk factors than to the vaccine itself. There 

are various ways to try and ensure that there are minimal underlying differences between the 

treatment and control groups. If the number of subjects is large then we can randomly allocate 

each subject to one group or another. Remember that random has a technical meaning, which in 

this case is that the probability of a particular person going to one group or the other is equal and 

is independent of the probability of any other person going to one group or the other. If you put 

the first 50 people who volunteer into the treatment group and the next 50 people into the control 

group, that is clearly not random; and I leave it to you to think about what kind of underlying 

differences they might be in this case which could contaminate the result. 

 

Now, when the number of subjects is small random allocation may not be sufficient to ensure that 

underlying differences are minimal between the groups. If I have a thousand subjects of whom 400 

are female and 600 male and I randomly shuffle them into two groups, it is quite likely that both 

groups will be around 40% female. But if I have only ten subjects - four female and six male - then 

when I randomly shuffle them into groups I can quite easily, purely by chance, get a breakup of 

one is to four or three is to two or something even more extreme. And that could be a problem for 

my experiment. 



 

One obvious thing we can do is to stratify when there are known differences among subjects. So, 

in this case, we could have two strata, male and female, and ensure equal representation of each 

sex in the two treatment arms - in this case the treatment and control. So, in this way through 

stratification we do not allow these chance effects to lead to these very very different outcomes. 
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But there might also be more subtle or invisible differences among people such that we do not 

know how to stratify. One approach we can use is to use something called matching or blocking. 

For example, suppose subjects from the experiment are drawn from different localities across a 

city. It is quite possible that these localities are differentially exposed to Covid. So, we can then 

match subjects according to locality;  such that locality A sends one subject to the treatment and 

one to control, and locality B sends one subject to treatment and one to control and so on. And this 

allows us to contrast the efficacy of the vaccine within each locality and then some across all 

localities to come up with an overall answer. 

 

A final way of trying to ensure that underlying differences among subjects do not bias an 

experiment is to measure the feature of interest both before and after the treatment. This does not 

work so well for the vaccine example we have been using but let us say we want to know the 

efficacy of a drug to reduce blood pressure. We know that each person differs in their baseline 

blood pressure. So, rather than implementing the intervention and simply comparing average 



resultant blood pressure in treatment versus control groups we also measure blood pressure before 

the intervention. 

 

And our outcome is now calculated as the average before-after difference in blood pressure 

between treatment and control groups. 

 

Now, there may be other factors that we are not interested in but can still affect the outcome and 

we need to ensure that they do not contaminate the results. For example, if the experiment is taking 

place over an extended duration, we should ensure that early subjects are not differentially 

allocated to one experimental arm or the other compared with subjects who enter the experiment 

later. Systematically interspersing treatments among subjects ensures that other confounding 

variables like time are orthogonal (which means uncorrelated) to the experimental treatments. In 

practical terms this might mean that as volunteers walk into the clinic, we assign them to treatment 

and to control arms in alternating manner. 

 

Another common practice in experiments is called blinding in which the experimenter does not 

know which subjects were allocated to which treatment. This is necessary to ensure that any 

unconscious bias the experimenter might have does not affect the results. You can  imagine that 

where vaccines cost a lot to develop, and can potentially result in large earnings, pharmaceutical 

researchers need to be very careful that experiments are blinded, in order to avoid being misled. In 

the case of human subjects, the subjects themselves are often also kept blind to which experimental 

arm they have been assigned to treatment or control. This ensures that any expectation that they 

may have about the effect of the treatment does not influence the outcome. If I know that I have 

been given a drug that is supposed to lower my blood pressure that can well have the unconscious 

effect of calming me down, and in fact, lowering my blood pressure, even if the drug itself does 

not work at all or if I know I have been given a drug that is intended as a vaccine I might 

subsequently engage in more risky behaviour,  

 

and the resultant calculations of vaccine efficacy are contaminated by the altered behaviour of 

those in the vaccine arm of the treatment. 

 



And finally, there can be unintended effects of experimental treatments which I will describe as 

part of the next example. 
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 Let us go through all these ideas about experiments using a bird example. Say we want to 

understand whether there is an effect of song playback on the time activity budget of birds. The 

context is that bird watchers, photographers and tour guides sometimes play bird song through 

loudspeakers to bring birds out into the open to be better seen and photographed. And one concern 

is that it might disturb the birds and disrupt their normal behaviour.  

 

So, to examine this we decide to conduct an experiment, in which some individual birds of a 

species say Magpie Robins are subjected to song playback. And we observe their subsequent 

behaviour in terms of how much time they spend foraging, resting, singing and so on. Now since 

we need a comparison, we decide to have a control group that is not subjected to song playback. 

Remember that treatment and control groups should differ only in the intervention of interest, 

which is song.  

 

So, the control birds need to experience the same kind of other experimental effects. The 

experimenter approaches them to the same distance and perhaps even plays back a sound that is 

not song. Some people play white noise at the same decibel level as they play song in the treatment 

arm, or they may play the call of some other bird species. In this way, we can conclude that any 



differences are due to song alone and not due to general human disturbance or attributed to some 

sound being played back versus no sound. 

 

Now, we need to decide which individual Magpie Robins should be in the treatment arm and which 

in the control arm. If we plan for a large sample of Magpie Robins then we can label each bird in 

the population and allocate them at random to one or the other experimental arm. 

 

We can also see if stratification makes sense especially when we are constrained to small sample 

size but also a good idea with large samples, perhaps the birds are in two different habitats forests 

and gardens. Then we can stratify accordingly. Or we might worry that their time activity budgets 

might be affected by smaller scale phenomena, which we do not know about. In this case, we could 

match or pair them in space such that we take pairs of neighbouring Magpie robins and then within 

each such duo, we allocate one at random to treatment and the other to control and then after the 

experiment we look at the difference in behaviour within each duo and average across all such 

duos in our sample. Further Magpie Robins might have underlying differences in behaviour - some 

might be naturally much more active than others for example. To take this into account, we might 

measure the activity levels of our subjects before the playback intervention and contrast that to 

their activity after the playback. So, this was about allocating subjects to treatments such that the 

comparison between experimental arms tells us what we want to find out. 

 

In addition, there could be a number of confounding variables, including time of day and season 

which might also affect our outcome, which is activity levels. We need to ensure that our 

experimental replicates are appropriately interspersed across these such that we do not end up with, 

say, more treatment trials early in the morning and more controls later in the morning; or more 

controls early in the season and more treatments later in the season. So, here is where some manner 

of systematic interspersion is needed. 
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It is ideal if the researcher is blind to the treatment when collecting the data on activity levels else, 

she might be unconsciously biased while observing the birds, since, people often feel strongly 

about playback in one direction or the other. In a field study such as this you might think that it is 

impossible for the researcher to be blind to the treatment but there may be clever ways of trying 

this. For example, the bird could be video recorded and then its behaviour coded back in the lab 

by someone blind to which experimental arm the bird was subjected to.  
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We have spoken about how there could also be effects that are not meant to be part of the 

experiment itself. For example, disturbance caused by the researcher’s presence. Some of these 

effects can be accounted for by careful experimental design, 



 in this case setting up the appropriate control. But there could b other kinds of unintended effects 

for example, playing back song might attract rivals to the scene, or predators, and those in turn 

could affect the subject's behaviour. And then there could be spillover effects, in which the 

experimental treatment might unintentionally affect not just the designated subject but also other 

subjects. For example, playing back song in one bird's territory might affect neighbouring birds as 

well which may be a problem if those effects are long lasting and those neighbours are meant to 

be experimental subjects afterwards.  

 

So, you will see that there are a variety of possible unintended effects of any experimental 

intervention and researchers have to think carefully about what these might be and what kinds of 

problems they might pose and how to deal with them.  
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Now in many situations experiments are out of the question, perhaps it is not feasible to go in and 

change things for ethical or logistical or financial reasons ,or in some cases there is simply no way 

to experimentally alter the potential causal variable like elevation or rainfall or temperature. Now 

this does not mean that questions of cause and effect do not apply here. On the contrary, often the 

most important phenomena to understand are those for which experimental manipulation is 

impossible.  

 



So, what can we do in such cases? Studies in which researchers do not go in and alter potential 

causal factors are called observational. And although our ability to infer cause and effect through 

observational studies is limited this does not mean that we are completely helpless. There are 

various opportunities and strategies that we can take advantage of in order to maximize our ability 

to draw causal conclusions, even if any single study cannot reach 100 percent certainty. 

 

First, we can keep an eye out for so-called natural experiments. For example, we may need to 

understand the effect of fire on grassland birds, but perhaps for various reasons we cannot 

experimentally burn grasslands. Now since the grasslands we study are subjected to burning for 

other reasons we can pay close attention and when a section of the area happens to burn, we can 

swing into action with our measurements of grass biomass, insect abundance and bird responses - 

comparing burnt with unburnt sections of the habitat. 

 

If we are lucky there may be multiple burnt and unburned sections which we can then use as 

replicates. The major caution with natural experiments is that the underlying conditions may be 

quite different. For example, perhaps the drier part of the habitat is more prone to burning than the 

wetter part, and so the treatment and controls in our natural experiment have a pre-existing and 

underlying difference, limiting our ability to detect the effect of burning alone.  

 

So two possible approaches to tackle this might come to your mind. One is to match treatment and 

control, in this context perhaps that might mean choosing to compare burnt and unburnt plots that 

are close to each other and therefore hopefully with minimal underlying differences. Then you 

would take the difference between burnt and unburnt in each pair, and average across all such 

pairs. 

 

Another, and ideally additional, scenario is where you also had the relevant measurements before 

the habitat burned not just after.  

By taking the difference before and after the burn, you can potentially subtract away underlying 

variation and use these differences as your measure of the effect of burning. The before-after 

difference in unburned sites is used to check for any background changes over time that have 



nothing to do with the burn itself. Using these strategies, we may be able to maximize the 

confidence in any causal inferences we make. 

 

Now the same strategies can be used in many other kinds of observational studies from which we 

want to draw causal inferences when looking at how eucalyptus plantations affect bird populations 

compared with forest you can again use matching or pairing to try and minimize underlying 

differences. Similarly, when comparing the effect of organic versus conventional farming on birds 

in agricultural landscapes. 

 

Do be aware of possible spillover effects. If you choose sampling units that are too close to one 

another they may be influenced not only by the habitat that they are located in but also the nearby 

habitat that we are using as a comparison. 
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As always make sure you intersperse with other possible confounding factors like time of day, 

season, elevation, rainfall and so on. Interspersing, to remind you, has the effect of making other 

possible causal variables uncorrelated with each other. Here is an example.  

 

Imagine that you measure females largely in the early morning and males largely in the late 

morning. Any conclusions you then draw about how the sexes differ in behaviour is confounded 

by time of day because sex and time of day are correlated in your design. In other words, you may 



find that females differ from males in their behaviour but that difference could actually be entirely 

due to the time of day when observations were taken rather than to the sex of the birds. But then if 

you intersperse such that the number of males and females measured are equally distributed 

between the two times of day then sex and time of day have been made orthogonal (or 

uncorrelated) with each other. And this maximizes our ability to ascribe differences in behaviour 

to one causal factor versus another. 
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Making possible causal factors orthogonal in the design of our observational studies is something 

we should be doing much more of. Many researchers measure a large number of variables, as what 

is called predictors, trusting that complex statistical analysis will separate among them and allow 

causal inference about what is called the outcome. For example, we might want to understand 

variation in species numbers which is the outcome and so, we run transects across a variety of 

locations. At these locations we collect information on various predictors, tree species, vegetation 

structure, food resources, rainfall, temperature, elevation and more. And we put all of these into a 

statistical model whose job it is to separate out important and unimportant predictors. This is 

difficult, and sometimes impossible, when the predictors are correlated among themselves as you 

can imagine many of these are likely to be. 

 



In such a situation, careful study design in advance might lead you to choose your sampling 

locations more carefully, such that key predictors are orthogonal - perhaps having equal number 

of combinations of high and low rainfall combined with high and low elevation, and so on. 

 

Now, unfortunately the results from even the most careful observational study following all the 

strategies described here are in most cases still not enough to confidently infer cause and effect. 

What else can we do? 
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One additional thing we can do is to triangulate with multiple lines of evidence. For example, if 

we suspect that vultures are declining because of diclofenac poisoning, we can compare vulture 

mortality across different regions that have different prevalence of diclofenac. We can also try and 

find some before-after data from when diclofenac became widely used to treat cattle. We can feed 

diclofenac to captive vultures (or a surrogate species) to look at the physiological effect. And we 

can do some calculations to see whether the prevalence of diclofenac use is sufficient to explain 

vulture declines. Any single line of evidence would not be considered sufficient but conservation 

scientists have done all of these different things; and taken together, the combined evidence very 

strongly points to diclofenac as the primary cause of vulture declines in south Asia.  

 

So, in your study, think about all the different angles that can be taken to attack the problem and 

pursue as many as you possibly can if you want your causal inferences to be as strong as possible. 
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And finally, we know that causal processes are usually not simple but rather follow a cascading 

chain of cause and effect. For example, timber extraction from a forest most likely does not directly 

kill birds, thereby reducing their population. Rather, the causal chain may look somewhat like this 

- timber extraction leads to opening of habitat, which increases the number of predators and 

decreases the abundance of invertebrates. Increased number of predators decreases the survival 

rates of small birds, and decreased invertebrates leads to lowered nutrition - thereby decreasing 

reproduction and also decreasing the survival rates of young and adult birds. And it is the decreased 

reproduction and survival that eventually leads to a decrease in population densities. Now, if we 

are to study multiple links in this hypothetical causal chain, and find that at least some of these 

conjectures is true, then we have a much stronger argument about what may be causing population 

change,  than if we only had measured timber extraction on the one side and bird population 

densities on the other. 

 

So, this was a quick tour of the basics of research design covering what kinds of research questions 

we might ask, what the basic decisions are in research design and how understanding the purposes 

of good research design can help us more carefully and effectively make those decisions when 

designing our studies.  

 


