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You have to notice one thing: if the data actually do not really fit a straight line and you

apply this method, you will still get some value of m and some value of b. That does not

mean it will make any sense. So, one has to first ascertain that either from the theory you

do expect a straight line fit, or the data when plotted do indicate a straight line fit. Then

only you should apply this method to obtain the values of m and b.

Else, what you do where the graph does not indicate a straight line fit, what do you do

then,  I  will  come to that  later.  But  obtaining  what  you have just  obtained:  we have

obtained the value y is equal to m x plus b, we have obtained m, and we have obtained b.

This does not suffice.

The reason is that we have obtained some values, but whenever we want to state we

always have to state with the error bar. So, we have to obtain the estimated value of m,

but there has to be an error bar stated with m, there has to be an error bar stated with b.

So, from the data we also have to obtain the standard error in m and the standard error in

b. Without that, the scientific enterprise of estimating the straight line fit is not complete.



In order to do that, first let us try to figure out how much would be the deviations. That

means, the delta y_i, these are the deviations of the actual data points from the straight

line fit. If they have a distribution, then there should be a mean and there should be a

standard deviation. Right? How to calculate the standard deviation of this? 

How do you calculate the standard deviation of the deviation from the straight line fit?

While  we do that,  we are  assuming that  we have estimated  m and b,  thus  we have

estimated the straight line, and now we are talking about the deviation from that.

So, I will write it as s square which is the variance of delta y. What is that? That will be

all these, the various delta y squares. Normally in order to obtain the variance, we divide

it  by N, the total  number of points,  minus 1. But here notice that the points are not

scattered  in  any  possible  way.  The  points  are  scattered  around  an  one-dimensional

object. It is basically these deviations we are talking about, not just a scatter of points

and their standard deviation. 

So,  because  it  is  now  scattered  around  an  one-dimensional  object,  therefore,  the

dimension has reduced by another one. So, it is minus another minus 1.

(Refer Slide Time: 04:07)

So, effectively it is N minus 2. This is how you have to obtain the standard deviation

after you have obtain the m and b, because you have estimated the straight line then these

are calculated from that. So, square root of that will be the standard deviation.



Now, we are actually trying to find out the standard deviation in m and the standard

deviation in b. What does it depend on? They depend on these deviations. 

Earlier, when we were talking about a variable z depending on x and y, we knew the

error  standard  errors  in  x,  we knew the  standard  errors  in  y,  then  what  will  be  the

standard error in z? We had earlier encountered a situation where z was a function of x

and y, then we saw that the variance in z is the derivative of z with respect to x square,

s_x square plus derivative of z with respect to y square s_y square. 

So, this is something that we encountered earlier when we are talking about propagation

of errors and this is what we will use. In what sense? In the sense that the deviation the

variance in m, the variance in b will be dependent on the variance of these y’s, delta y’s.

So, that is how you will use it. If I want to write it, it will look something like this.
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The variance in m will then be dependent on delta m by delta y_1, y_1 is actually the

first point, say, here. The delta y_1 is the difference of the first point from the straight

line. So, delta y_1 times the variance in y_1 plus delta m delta y_2 square, there is a

variance in y_2 plus dot dot dot dot dot. Why? Because m is a function of y 1, y 2, and

all that, those data points.

Now, the variance of y_1 and y_2 and y_3, these are not actually different things. These

are basically this variance. So, we can simplify that as delta m, delta y_1 times this one is

nothing but s square delta y (because this s square delta y is the variance of the data

points from the straight line fit and this is just one of them). So, it will have the same

character.

Similarly, delta m delta y_2 times s square delta y plus and all that. So, effectively then

this will get the s square delta y square common. And what remains inside is nothing but

these individual ones, which can be written as sum over delta m delta y_k, its square and

sum over k.

So,  all  I  have done is  to  take these common.  What  remains  are  these terms.  I  have

expressed that as a sum; that is what I have done. So, now, we need to find out these

values.
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In order to find these values, I will use whatever we had earlier calculated as the m and

b. So, s_m square, the variance in m is given by this.
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Now, we have already seen that m was two separate quantities. The denominator first:

that  was  N  sum  over  x_i  square  minus  sum  over  x_i  whole  square.  That  was  the

denominator. The numerator was: N x_1 y_1, I am breaking apart in form of 1, 2 and all

that. So, it will be N x_1 y_1 minus it was y_1 sum over x_i. So, that was the first term.



Similarly, there would be similar terms for 2. So, plus N x_2 y_2 minus y_2 sum over

x_i dot dot and that continues.

Now we are to find the derivatives. So, we have to differentiate m with respect to delta y

1, the first one. And that will indicate what will happen for the general case k. 

So, if I take the derivative, the denominator remains the same. So, denominator is N sum

x_i square minus sigma x_i whole square. Now, the first one yields only N x_1. This one

is minus sum over x_i and the rest will disappear. Similarly for y_2. It will have the

similar terms, only 2 here. 

Similarly, for y_k, it will be k here. 

So, we can in general write the delta m delta y the kth term is, the denominator remains

the same, N sum over x_i square minus x_i whole square. Here it will be N x_k minus



x_i. So, in general, we can write this. If we can write this, then we can also write its

square that is what we need ultimately because we are interested in the terms like this

square.
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So, delta m delta y k, its square will be this term squared is equal to 1 by this term

squared this whole term squared. In the numerator, it will be N square x_k square plus

sigma x_i whole square minus twice N x_k sigma x_i.

Now, what we need is sum over all k. This has to be summed over all k. 



So, sum over k of this fellow, delta m, delta y_k whole square. The denominator did not

contain any k term, so that will remain as it is. So, I will just write 1 by whatever it was

square; I am not writing every time because it will only consume time. And here we have

sum over k of this term.

So, let me just write N square x_k square plus sum over x_i whole square minus twice N

x_k sum over x_i. This is what we have to calculate.
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Now, notice that the sum over k x_k, is same as sum over i x_i, because this i and k are

just dummy variables. So, we can proceed by expressing this as this can be written as

equal to; I will keep the denominator as it is 1 by this square. In the numerator, this will

become sum over, I will change k to i, it is N square it would be sum over x_i square. 

This one is repeated N times, so you will have N plus N sum over x_i this is whole

square, whole square minus twice N, this one will be x k sum over, this will result in the

same as sum over x i. So, this will be sum over x_i whole square because this sum over k

x_k and sum over i x_i are the same things. So, this is basically sum over i x_i twice, so

it has become square; is equal to again 1 by whatever it was in the denominator, square.

Now, notice that this and that are the same, this is only twice of that, so we get simply N

square sum over x i  square minus again N whole sum over x_i whole square.  Now,

notice what was here you can now take N common, so, this one disappears, square is not

necessary, and this one is also appearing.

So, let it remain as it is. So, you have this. What was in this bracket? You notice that it

was this. So, now, let me write it: N sigma x_i square, N sigma x_i square minus sigma

x_i whole square minus x_i whole square. Notice that this is exactly the same and here is

a square.  So,  this  will  cancel  off with the square,  leading to a simpler  expression N

divided by N sigma x_i square minus x_i whole square.

So, the left hand side was this. Let me write this as sum over k it is delta m delta y_k

whole square was this. 
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So, we can now express s_m, the standard deviation in m as standard deviation in delta y,

which we have we have already calculated, times the square root of this, square root of N

by N sum over x_i square minus x_i whole square. So, this is the standard deviation in

m.

And in quite that the similar way we can calculate this standard deviation over b. The

method is the same, but it will again be a repetition of the same method of calculation.

So, we will not do that. We will simply write the result. It is again the square root of

sum over x_i square divided by the same thing: N sigma x_i square minus sigma x_i

whole square.



So, we have been able then to obtain the value of m with an error bar, and the value of b

with an error bar. This is what is needed. That means, when we talk about a straight line

fitting, we essentially estimate the values of m and b. But at the same time we have to

estimate what could be the error, what could be the standard error for m and b.

And this is what we have been able to calculate by calculating the standard deviation

s_m and  standard  deviation  s_b.   So,  this  way  we  have  been  able  to  calculate  the

standard errors in the value of m the value of b.
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This was where you are trying to fit into a straight line. But as I said, all fitting need not

be  fit  into  a  straight  line.  There  are  other  situations  where  some  non-linear  fit  is

necessary.  But in that  we have to be bit  careful  because there are  certain  non-linear

functions that are more prevalent,  common,  in physical  sciences,  and there are some

which  do  not  really  yield  much  insight.  The  ones  that  are  really  important  are  the

exponential function and the power law.



So, first the power law and second the exponential. These two the functional forms yield

some physical insight and that is why physicists are often interested in these. 

For power law it is y is equal to x to the power some constant a and this is y is equal to e

to the power x or let me write this rather general form, one can write it as e to the power

some m x and there is a coefficient a. That is a general form of the exponential function.

How do you do that? We extract this by actually reducing to the linear form. How? If

you plot that in a log graph, then you actually do this a log of y is equal to a log of x. 

So, this is a straight line relationship between two logs and the log could be with the base

of anything, it could be 10, it could be 2, it could be e, whatever.

So, in this case, we simply plot the same data on a log graph and if it now approximates a

straight line, then it is a power law. And this straight line fit can be can be found exactly

the way I have just shown. 

In case of the exponential graph, we plot it on a semi log graph. Well, this will be in the

ln and this will be just plotted. So, this will be ln y is equal to, this will be ln a plus this

will be just m x. 



Now, because it is e to the power m x, this has to be only to the natural logarithm. This

will be in the natural logarithm form. If you do that, then you will get again a straight

line fit with this representing b. So, in both these cases it can be cast in the form of a

straight line fit and the straight line fit can be obtained by the least square method that I

have just shown. So, all these forms then can be extracted from the same method that I

have already illustrated.

If there is some data which cannot be cast into either of these forms, but it is apparent

that it is a non-linear data, then we try to express it as a polynomial fit. Polynomial fit,

which is basically y is equal to sum a0 plus a1 x plus a2 x square plus dot dot dot. Any

graph can be fit  into this  form. But let  me tell  you that  it  does not really  yield any

physical insight. 

Having expressed a graph in this form is essentially admission to the fact that, you are

saying ‘I do not know what the functional form is’. So, this will not help the theorist to

obtain a reason why it should be so. If it is a form like this, then a theorist can try to find

out why it should be so. If the it is like this then also the physicist can try to find out why

it should be so. But if it is like this, one cannot.

So, in general, even though any graph can be fit into the polynomial form, it does not

really  lead to  much insight  and therefore,  we normally do not  do it.  So,  effectively,

meaningful curve fitting are obtained in the form of the linear fit or the power law fit or

the exponential fit. The others really do not yield much insight and therefore, I will not

cover that in this course.


