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The most important statement of the central limit theorem is the fact that the distribution

will slowly become a normal distribution. Now, when you say a large sample size, how

large should it be? You can do this numerically. Take a very badly skewed distribution;

for example, something like this. If you take a very bad distribution something like this,

a distribution like this as bad as this, there can be some samples here, nothing here, some

samples there, nothing else. Even for that bad a distribution, if you take 10 samples and

obtain the mean, it will be somewhere here, if you take another 10 samples it will be

somewhere around here, another 10 samples will be somewhere here. So, you will get

some  distribution,  but  it  might  not  be  a  very  good  approximation  to  a  normal

distribution. 

But instead, if you increase the number of samples each time, you will find that as you

exceed say 20, it is more and more resembling a normal distribution, and beyond 25, it is

practically a normal distribution. 



Because  of  that,  we normally  take  it  for  granted that  beyond 25 if  you take  further

readings, it does not improve the approximation to a normal distribution. So, it suffices

to take 25 as the number. So, ‘large’ essentially means n should be greater than or equal

to 25, at least 25. 

And I  would strongly advise you to do this  experiment  numerically  once,  by taking

random samples from this kind of a distribution, and obtaining the mean, and finding

how  the  means  will  be  distributed.  You  will  find  that  it  approximates  a  normal

distribution as n exceeds 20, and after 25 there is no further significant improvement in

the approximation. So, how large? 25. Now, on that basis, let us do an example. With the

help of that, you will realize the advantage of the central limit theorem.
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Example:  Suppose  there  is  a  population  with  mean 2;  I  will  not  specify  2 in  units,

because it could be any unit. If you are measuring the height of a population it will be in

meters, if you measure the weight of a population it will be in kilograms. So, whatever it

is, I will specify that as a unit independent number, and the standard deviation is 0.7. 

The distribution within this population is unknown. Suppose you do not know that. Now,

suppose you take 20 samples out of that population and then again you take 20 samples

out of the population. We are trying to assess what will be the probability that the sample

mean will lie beyond 2.2.



How do you proceed to attack a problem like this? It says that the population has mean

this, standard deviation this. So, if you taken 20 samples you get some x bar, sample

mean. If you again take another 20 samples you will get a different x bar, the sample

mean. If you keep on taking such 20 samples again and again, you will get a distribution

of the means and the central limit theorem asserts that, since 20 is close to the necessary

number 25, it can be approximated by a normal distribution. 

It can be approximated by a normal distribution with the same mean as the population

mean 2, and the standard deviation will be the population standard deviation 0.7 divided

by square root of the number of samples, which you have taken 20. This comes to be

0.156. So, that will be the standard deviation of the distribution of the means. 
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Now, we have to face the question: what will be the probability P that x bar lies above

2.2? This is question asked. This is equal to probability that x bar lies above—I will

write it a bit differently—2.2: how different is it from the mean 2? This is 0.2. Divide it

by the standard deviation, which is 0.156. This will become 1.28 standard divisions. I

will write this many standard deviations above the mean.

So, 0.156 is the standard deviation, and 1.28 standard deviations would be somewhere

here. So, this is 1.28 standard deviation and we are trying to find out the area under the

curve in this range. This is what we have to find out. 



Now,  this  value,  the  multiplier  of  the  standard  deviation,  is  called  the  z  value.  In

American pronunciation it will be zee value, but let me go by the British pronunciation

or Indian pronunciation: the z value. The z value is the multiplier of this. 

Now, people have integrated the normal distribution curve up to certain values and have

tabulated that. That is available as the z table and we have to read off the value from

there. Let us do that.

(Refer Slide Time: 10:01)

Here I have plotted the z table and this is the normal distribution and here is the z value.

What the z table gives is that, the area under the whole curve is 1 and how much of that

is contained to the left of that z value. So, that is what is given in the table. So, now, we

have to read off the table the area to the left of 1.28, which is the z value.
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So, when we do that, 1.2 is here and we go further to the right, and 0.08 is here. So, we

get 0.8997 as the value that we have to use. I will go ahead with that value to the rest of

the calculation. So, let me write it afresh. 
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A probability  of x bar lies  1.28 standard deviation above the mean,  this  is  what  we

needed to calculate. It is a normal distribution because the number of samples was close

to 25, 20 it was. We know that this value is the population mean, which was 2. The

standard deviation was 0.156 and divided by square root of n was 1.28.



So, we had to calculate the area here, but we have actually calculated the area to the left

of that. So, this area has turned out to be 0.8997. So, this area will be 1 minus 0.8997. It

will be 0.1003 which is 10.03 percent or 10 percent approximately, which means that for

the problem given, the actual the mean of the population was 2, but by obtaining 20

samples, I stand about 10 percent chance of obtaining a mean which is above 2.2.

So, there is a high risk of committing an error by making the measurement that way. But

suppose we increase the number of samples to 50. Suppose we increase the number to

50. Then what happens? 

Then  we  get  this  curve,  a  more  narrower  distribution.  It  will  become  a  narrower

distribution, and in this narrow distribution the mean will be 2, the standard deviation

will be 0.7 the original standard deviation, divide by root over 50. Now, this is equal to

0.099.

And, using this if we calculate, if you obtain the z value. Then the z value will become: z

is equal to, the way we calculated, 2.2 minus the mean 2 divided by the new standard

deviation which is 0.099, then it comes to be about 2.02. For this value if we again refer

to the z table, then we find that the area to the left of the z value, in this case becomes

0.9783. 

Therefore, the probability of x bar lies above 2.2 will now become 1 minus 0.9783, is

equal to a small number, it will come to be 0.0217, around 2.17 percent. So, the chance

of committing an error will be less. 

Notice  that,  all  these we are being able  to  calculate  because the central  limit  theory

asserts that the curve ultimately we get for the distribution of the means will be a normal

distribution. So, all this could be calculated using that fact. 

Now, the value that we get by dividing by square root of the n, that standard deviation of

the sample means, is called the ‘standard error of the mean’. So, this is a important thing

that we get. A standard error of the mean, let us call it sigma. But, sigma of what? Of x

bar, that is our sigma divided by square root of n. This is the standard error of the mean

and this  gives  an estimate  of how much error  can we commit  by actually  obtaining

samples and talking about the means obtained from the samples. Let us illustrate that

again with another example.
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Now, another example: Suppose, you have measured some quantity 36 times (I am using

a square number so that  you can obtain the square root easily)  and have obtained a

sample mean, we are calling it x dashed, you have got it 112. And a sample standard

deviation, how much is it? s equal to 40. Now the question is, what is the probability that

the actual mean, the population mean, we called it mu, lies in the range between 100 and

124? 100 is this mean minus 12 and 124 is this mean plus 12. So, this is how we have

defined the problem. 

Notice that, in this case we have only the result of the sample available to us, and we do

not know the actual population mean or population standard deviation. In that case can

we  estimate  some  range  in  which  the  population  mean  will  lie  and  with  which

probability will that happen? 

Notice again the line of argument. If we repeated the experiment again and again, every

time  taking  36  samples,  then  (since  36  is  bigger  than  25)  we  will  get  a  normal

distribution of the sample means. So, the sample means will have a normal distribution

something like this. 

This is the mean, not of the sample, but of the population, and it will have a standard

deviation which is the population standard division divided by root over 36, that is 6. So,

this is what we can infer using the central limit theorem. Now, what we are trying to find

out is the probability that the actual mean mu lies in this range.



So, the probability that mu lies in the range: this is 100 (100 means the actual x bar)

minus 12 to x bar plus 12. This is what we are trying to find out. Now this distribution

we do not know really, but we have to try to somehow obtain the z value. For that, we

need to find out the standard deviation of this distribution.  But we do not know this

number;  this  number  is  ‘out  there’.  This  number  is  of  the  population,  and we have

measured only the sample.

But the best we can do under the situation is to use this sample standard deviation as an

estimate of the population standard deviation. So, in place of sigma (we do not know the

sigma), we will substitute the value that you have actually measured, which is 40. So, we

get the sigma of the x bar as 40 divided by 6 which is 6.67. 

So, we now have to find out: mu lies within what range of the standard deviation? P:

probability of mu lies within 12 of x bar. Now notice, here is a value mu and here is a

value x bar. We have found x bar, and we are trying to find out how far can mu be from

x bar.

Now, this is the same as how far can x bar be from mu. Therefore, we can also write this

as the probability that x bar lies within 12 of mu. Now, this is equal to probability that x

bar lies within 6.67 of mu and this number is the z value. In this case it comes to be

approximately 1.8. 

Again if you refer to the z table and read out for this number 1.8, the area to the left of

that. 1.8 standard deviation will be somewhere here. So, we want to find this area and

this side and the other side. We want to find this area, this total area actually. This is in

the positive side, this is the negative side. 
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This area we need to find out. But we have actually found, if we read out from the z

table, then the area to the left of z equal to 1.8 is equal to 0.9641. We have to refer to this

z table and you have to read this out. 

Now notice: here we have read to the left of it. There are two ways of calculating this

whole thing. One is 1 minus this thing, you will get this area, times 2 is one possibility.

The other possibility is that we have got this area. If you subtract 0.5 from this whole

area, then you get only this area. Then you just get the twice of that. Then it will be

within this.

So, we need to find out how much area is contained, excluding these two tails, within

this area. That can be found this way. I will do it the second way. So, 0.9641 minus 0.5,

this whole area minus this half area is this area. Now I have to twice: this into 2, this

comes out to be 0.9282. So, the probability that the mu, the actual mean, will lie within

12 of x bar is this 92 percent 93 percent approximately.

This way, even without actually obtaining an infinite number of readings, by taking a

finite number of readings, we can infer something of interest regarding the character of

the  population  mean.  This  method,  we  will  actually  carry  through  in  much  of  the

measurement process that we will come across. I will come to that later.

So you see, we have obtained the answers to two questions that we asked right in the

beginning of the course. The first question was, how many readings do we need to take



in order to make a confident estimate of the mean? The answer is 25. Now, who gives

this 25 number? It is actually empirically obtained.

We have tried it out and found that, that number works in the sense that, by increasing

beyond that number we do not gain much. We have ultimately obtained a value which, if

repeated many times, will give a distribution of the means which is a normal distribution

and from that normal distribution we can extract all the information.

And the most important information we extract is the standard error of the mean. I will

just  call  it  SE.  Standard error  of  the  mean is  the standard  deviation  of  the  readings

obtained divided by square root of the number of samples.

In case of a physics experiment, the number of samples means how many times you have

conducted the experiment and how many data points you have got. So, this is a very

important quantifier that we will use many times in the next few lectures. Just keep this

in mind. This is the standard error of the mean. 

With that we will close today and we will continue with that in the next class.


