
Course Name - Recommender Systems 

Professor Name - Prof. Mamata Jenamani 

Department Name - Industrial and Systems Engineering 

Institute Name - Indian Institute of Technology Kharagpur 

Week - 03 

Lecture - 12 

 

Lecture 12: Distance and Similarity (Continued) 

 

  Hello everyone!  We are going to continue on the concept of distance and similarity in 

continuation with  my last lecture.  To start with, let me tell you we are talking it in the 

context of collaborative filtering  that too neighborhood based collaborative filtering.  

However, as I told you in the last class, we need not think that this distance and similarity  

concept is related only to collaborative filtering.  This is a very widely adopted concept 

applied almost in every area of machine learning.  In fact, when we talked about k nearest 

neighbors and clustering methods, we also talked about  distance and similarity concepts.  

Now coming to the gist of the last lecture that we covered, we tried talking about the 

concept of distance function. 

  Then we looked at the distance in binary setting in case of the values which are not 

numeric and they are binary.  And then we tried talking about the binary based, then we 

tried talking about the quantitative  distance concepts and we saw different kinds of 

norms that we can be using for that purpose.  Now we continue with our idea of distance 

and similarity.  So now, we will be talking about our distance measure which is for 

multivariate numeric data. 

 

 

  This distance measure is called Mahalanobis distance.  Mahalanobis is a Indian 

statistician and this particular distance measure is proposed  by him.  Now in this distance 

measure which also considers numeric data, the main idea is we have to  also consider the 



distribution from which the data point is drawn.  So, this distance is a generalization of 

finding how many standard deviation away a  point P is from the mean of the multivariate 

distribution D. Now this distance is 0 for a point P at the mean of the distribution and as 

we go far away from P, this value increase and in the direction of the principal 

components. 

  Now looking at this, this can be defined as Mahalanobis distance can be defined as P 

minus Q where P and Q are two vectors and I mean the two points in the 

multidimensional plane and all of them have some P number of components.  So 

basically, P is a point with let us say points P 1 to P P and Q is another point Q  1 to Q P 

and this P dimensional vector, these two points are part of many points from which  some 

distribution is coming up.  Now that how do you get the distribution? If you remember, 

we had the data matrix in  which we had n number of observations. So, this n number of 

observations each were having  let us say P dimensions. So, P elements they were having. 

 

 So, from this n observations, we can get its covariance matrix which is a P cross P 

matrix. P is the number of dimensions  here. So, there is because I am also using P as the 

points, please do not confuse with  it. So, P is the point here and in this P that I am talking 

about is the dimension.  So now, rather I will be changing this to let us say this point to x 

and this point to y and this is x y, this is x y and there are many such vectors x number of 

vectors. 

  Now this sigma is the covariance matrix of this input data x and when we compute this 

covariance matrix because we are drawing it from a sample, we can divide this by 1 by n. 

This is of course, P. So now, when the covariance matrix is identity matrix, this  

Mahalanobis distance is same as that of the Euclidean distance. Now, if we look at the 

points point A and B, the Euclidean distance between these two points is 4 points 14.7 

whereas the Mahalanobis distance is 6. 



 Why so? If we look at this as I told you in the  last slide, as I told you in the last slide, 

actually in this data shows positive correlation  among the data points in this two 

dimension. So therefore, if we try drawing the major  axis on which maximum variability 

lies, we will be getting there, we will be getting  a rotation and get this principal 

component 1 and principal component 2.  Now, if we look at these points from the 

perspective of these principal components, their maximum  variability will be captured 

on this PC 1. As a result, the points will have different  representations, different values 

in terms of this new axis. So, as a result, this distance is less because there will be the 

mean will be somewhere here. 

 So, naturally they will be more on this axis, the distance will be they will be more close 

in terms of this axis. Now,  moving ahead, moving ahead, look at this, we have these 

three points A, B and C. Let us see  how this computation is happening. Let us say for 

from this data, this is the covariance matrix.  How do we get this covariance matrix? As I 

told you from whatever data set you already have with you, from that sample you will be 

making your covariance matrix. 

 

 Now, once you have this covariance matrix which is in this case given to you, take this 

inverse and this p minus p here the two points when we take A and B, the first point is 

this that is your p and second point is this that is your q. So, p minus q sigma inverse, 

then p minus q transpose will be giving  you my logis distance values. So, if we look at 

this point, the distance between A to C is less  than that of A to B which if you look in 

terms of your Euclidean distance, this one looks longer,  whereas this one is short. 

Whereas, because this data is actually lies I mean they are I mean the  if you look at the 

PC 1 and PC 2, if this data is because of its new rotation, it is probably  the your PC 1 

will be somewhere here and PC 2 will be here. So, in terms of that this new values 

emerge. 



               

 So, there are many vector based similarity measures. So, in some situations the distance  

measures provide a skewed view of the data. Skewed view in the sense the data may be 

very  sparse and sometimes the zeros that are there part of the data are actually not 

significant.  Significant in the sense zeros are not meaningful. In case of asymmetric 

binary variable this is the case. 

 Now, in such cases vector based similarity measures are found to be very useful. Most 

common  such vector based similarity measure is your cosine similarity. Let there be two 

vectors,  the first one x with n component, second one y again with n component. So, if 

we take the  dot product then element wise we multiply. Now, what is cosine similarity? 

Cosine similarity is normalized dot product. 

 So, this when we normalize this similarity this dot product we are supposed to divide it 

by the norms of both the values. So, both this x and y this is  of course, capital Y capital 

Y. So, norm of x individual element squared and taken root over  individual element 

squared and took a root over and this gives you the vector based cosine  similarity. This 

vector based cosine similarity also have another variation  adjusted cosine similarity. So, 

this is one example here we have two vectors d 1 and d 2 with elements only zeros and 

ones. 

 

 Now, element wise these two these two these two these two are getting multiplied and 

this is the norm. Norm individual squares of each element taken the  norm and you 

divide. So, this is your cosine similarity, this is your dot product and this  is your cosine 



similarity. Correlation can also be used as a similarity measure. So, about correlation we 

have already studied when we talked about the statistical foundation. 

  Correlation basically relates two different attributes. Now, when we talk about 

correlation  as a similarity measure we are now not talking about the attributes we are 

talking about two  vectors let us say x and y x 1 to x n y 1 to y n two vectors and this will 

have some mean x bar  and this will have mean y bar. So, given this mean individual 

elements of this will be a mean  will be subtracted from individual elements and they will 

be getting multiplied and you take the  root over. This is the computation of Pearson 

correlation coefficient. This is the first vector x second vector y these are the mean in the 

sum of all this divided by n sum of all this divided by n these are the values where x is 

getting subtracted from mean and this is y is getting subtracted from mean. 

 Now, this value at individual component level is getting multiplied and this sum. So, this 

makes the first part of this the numerator. Now, coming to the denominator what  was the 

denominator? Denominator was taking the square summing is taking the square of the  

individual from where mean is getting subtracted and summing them up and finally, 

taking the root  over. So, these are the squares of individual elements when you add them 

up you are getting  these values and your correlation coefficient is basically root over of 

this value divided by this  into this root over. So, it turns out to be this much. 

 

 Now, come to the second approach of correlation based coefficient. So, this is called 

Spearman's rank order correlation coefficient.  The benefit of Spearman's rank correlation 

coefficient over Pearson's correlation coefficient  over the Pearson's correlation 

coefficient is it is specifically suitable for ordinal scale.  Whereas, Pearson though it is 

also used in case of ordinal scale, but that is most suitable when  the data is in some kind 

of continuous scale. But if the order matters then the numeric value can also be 

represented in terms of order and you can find out. 



 And moreover one very important thing is that here in case of Pearson's when you take 

the correlation basically you talk about a linear relationship. Whereas, in case of 

Spearman's nonlinearity can be captured pretty well.  So, if the variable is not in terms of 

rank then you have to first convert them into rank. So,  this is basically once you rank the 

variables this is rank of xi that is individual data points minus  the average rank. 

Individual rank minus the average rank for both the variables. 

 

 So, x is one but x sorry both the both the observations x is one observation y is another 

observation. And just like your Pearson here also individual rank minus average rank 

getting squared  for both the variables getting added these squares are getting added up 

and then multiplied and you  take the root over. And it can it is also observed that this 

Spearman's row can also be represented  in terms of this formula. Where n is the number 

of attributes and di is the square of the rank.  Now look at this di so di square is the 

square of the rank. 

 Now look at this here we have two objects x and y both of them are not in ordinal scale 

but they are numeric values. So, had they  been in ordinal scale this rank would have 

directly computed but now we have to do little  bit sorting. So, if you sort this variable x 

what is the order what is the lowest what is the highest  value highest value is 80. So, 

rank is 1. What is the second highest value 76 rank is 2. 



 

 So, in an in an decreasing order start from the highest and keep on sorting first position 

second position third position and so on. Now look at the second variable in the second  

variable again 77 is the highest then next one is 70. So, both the variables with respect to  

their individual data points are ranked. So, while ranking it may so happen that let us say 

value 77  occurs twice. So, in that case the first position which the first position which 

was 77 and it was occurring twice then 1 will be divided by 2 and both will have rank 0. 

5.5. Similarly, here is  another example suppose there would have been two 61s two 61s 

two 61s the position number of each  would have been now the position number of 61 is 

6 and 62 is 7 but now both 61 and 61 would have  occupied position 6 and 7. So, the 

individual rank would be 6 plus 7 divided by 2. So, that will be 6.5 6.5, but the next 

element that is after 7 this is this was the next element 8 next element 8 that will have the 

value 8 as such. 

 

 So, once you decide these ranks you have to find out this difference in the ranks sorry I 

told you that d is the difference between the ranks. So, in the  last lecture I told that d is 

the rank now d is the difference between the ranks. So, now this  9 minus 4 5 3 minus 1 2 

3 minus 2 1 that is how we calculated this difference between the ranks d  is the 

difference and you calculate the d square and this Spearman's row is calculated using this  

formula. So, now let us go to the next correlation based similarity this is called Kendall's  

correlation this is again specifically designed to capture the association between two 



ordinal  variables. In case of Spearman's even if it is not ordinal we were trying to rank 

them and order them. 

 Now here it was specifically for two ordinal variables. Now when it is between two 

ordinal  variables let us say x and y again are two vectors x and y are two vectors let us 

go back  to the example one example. So, this here this in that context we are calling it as 

x calling it as  y. So, they were two vectors. So, what we were doing this Kendall's tau 

this n was the total number of pairs which how I mean that this we when we come take 

these combinations we have to make a number of pairs. 

 

 So, there are four elements here and four elements here. So,  we take n to be 4. So, now 

here what we do you take the sign of xi minus xj what is xi xj they  are the elements of 

the vector x and i is less than j. So, which means how many pairs you will be getting 

from this example there are four elements. 

 So, this is x1 x2 x3 x4. So, you will  be taking pairs and the relationship is i should be 

less than j. So, x1 is 1 x2 is 3 x3 is 2 and  x4 is 4. So, you take the combinations 1 with 3 

2 and 4 3 2 and 4 this first 3 then 2 with other 2  that is these 2 then 3 with the last one. 

So, that makes it total 6 number of combinations.  So, similarly for the second vector you 

are taking all the combinations. 

 Now, after you take all the combinations we are supposed to see are both these vectors 

provide.  Look here in this particular example we are specifically talking about the four 

item ratings  given by two customers. So, customers when the customers are giving rating 

this is for the first item there are there are four items here and two customers let us say 

customer R1 and R2 are giving and there are four items R1 and R2 and these are the 

ratings. So, item 1 item 2 item 3 item 4. 



 So, 1 1 3 4 2 2 4 3. So, same customer has given item 1 rating 1 to item 3 it is giving 

rating 3 and  second customer given same 1 to item 1, but 4 to item 2. So, is there any 

difference in their  rating behavior when this person is giving 1 giving 1 and 3 while 

comparing two items  this person is giving 1 and 4 comparing while comparing two 

items. So, we take the difference  in which there is I mean if there is any difference in 

rating. So, if this one is higher than this we give it minus 1. 

 So, that is defined by this sine function. So, if xi minus xj is greater than  0 then it is 1 if 

it is less than 0 it is minus 1 if they are equal they are 0. So, when two pairs  over here. 

So, here this minus this is negative. So, this is minus this minus this is negative. 

 

 So, this is minus 1 and so on. So, now, when we multiply this signs of each now look at 

this  here we have a concept of concordance concordant pairs and discordant pairs 

concordant pairs and  discordant pairs. So, what are concordant pairs? We what are we 

comparing? We are comparing rating  behavior of user 1 and user 2 R1 and R2. So, both 

of them are saying item 3 is better than  item 1. So, both of them agree. 

 



 So, there is concordance in their opinion. Here also both  of them agree that item 2 item 

1 sorry item 2 is better than item 1 both of them agree both of  them agree both of them 

also agree here and here they do not agree because here this person is  saying this item 2 

is better than item 4 because to item 2 it has given the rating 3 to item 4 it  has given 4, 

but here it is just opposite. So, both of them disagree and here also both of them  agree. 

So, using either the original formula by multiplying the signs of all this like minus 1,  

minus 1, minus 1, minus 1 getting multiplied individually multiply and then divide by n  

into 4 minus 1. What where the what the 4 is? 4 is coming from the number of what I 

mean the the dimension of each vector. 

 So, here the number of item in this particular example. So, that  divided by this will be 

giving you 2 by 3. Similarly, if we consider the concordant and  discordant pairs how 

many concordant pairs are there? 5 concordant pairs where they agree. So,  here they 

agree here they agree here. So, there are 5 places they agree and 1 place they do not 

agree. 

 So, c minus d by c plus d is again 2 by 3. So, whether you go by this formula or this  

formula they lead to the same observation I mean they in fact are same that tau value of 

tau in  this particular example is 2 by 3. So, with this we complete our discussion on 

distance and  similarity. Now, let me tell you one thing even we limited ourselves to the 

discussion of few  distance and similarity measures there are many more and as the 

nature of the data changes then  the type of similarity or distance function we use will 

also change. For example, in case of let us  say time series data probably you have to take 

a different distance measures. In case the data is some kind of text data probably the 

distance measure will be different, but anyway right now we have limited to this 

ourselves to only this kind of measures and in subsequent lecture if we come across a 

situation where a new distance measure is required we may be discussing on that. 

  So, to conclude this Mahalanobis distance we started with the consider Mahalanobis 

distance and we understood that it is a multivariate distance measure that considers the 

correlation among the variables and while doing so, it tries finding out some kind of 

centroid of the data and tries to find out the distance from that centroid. Now, when it 

comes to centroid of the data that  centroid is basically the centroid is is measured 

considering the correlation that exists among the  variables. In other words, we represent 

the data in that new rotated scale in terms of our we we  put this in case of we rotate it 

and in terms we present it in terms of principal components and  along this principal 

components if we measure the distance that turns out to be the Mahalanobis  distance. 

Now, if there is no relationship among the data then this Mahalanobis distance turns out  

to be the Euclidean distance. So, when there is no relationship in the data means all the 

variables are not correlated which means your covariance matrix will be a diagonal will 

have all the ones in the diagonals and rest of the elements non diagonal elements are 0. 



 In that case this Mahalanobis distance will become the Euclidean distance only. Now, 

when the data is very sparse  and there are number of zeros in the vector there are number 

of zeros and the zeros in the vector  are not significant then vector by similarity measures 

are used. Now, in case there is high  variance across data objects correlation coefficient is 

accepted to be a good option.  In case we are not interested in the linear relationship 

which is represented by correlation  coefficient and we are interested in the rank. So, we 

can use Spearman's rank order correlation coefficient it is a good measure it is a ranked 

version of Pearson's correlation coefficient and it is a good measure when there is a non 

non-linear relationship in the data as well. 

  And Kendall's correlation coefficient is also a very good measure when both the 

variables both the data have ordinal variables and in this context we specifically saw one 

example where we have rating given by two users. Thank you very much. 


