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Hello everyone, we have now reached lecture number 5. This is a continuation of our previous 

lecture, lecture number 4 on probability basics. We will first discuss De Morgan's theorem. De 

Morgan's theorem is related to the complement of events. 



If we have two events, A and B, and we are interested in their union, taking the complement of it 

means we are talking about the area outside A union B. This can be obtained by finding the 

intersection of what is outside A and what is outside B. Therefore, anything outside A but not 

part of B gives us the complement of A union B. 

Similarly, if we are interested in the intersection of A and the complement of A intersection B, 

we need to find the union of what is outside A and what is outside B. This is because everything 

outside B and everything outside A has to be covered. 

So, in a simple way, we can see that when we take the complement of a group, the individual 

elements will be complemented and the signs will be reversed. If it is a union, it will become an 

intersection, and if it is an intersection, it will become a union. 

We can use this property to simplify cases where two events are independent. For example, if we 

have n individual events that are a union, we would have had 2 to the power n minus 1 terms to 

solve and evaluate. However, using De Morgan's theorem, we can simplify this as the probability 

of A union B is equal to the product of 1 minus the probability of the complement of A union B. 

The complement of A union B is the intersection of A complement and B complement, which 

can be multiplied to get their probability since they are independent. So, the probability of A 

union B can be expressed as 1 minus the probability of A union B complement, which is equal to 

1 minus P A complement P B complement. 

Similarly, for three events, we can simplify it as 1 minus P A complement P B complement P C 

complement, which is much simpler than solving it the other way. If there were four events, with 

D also involved, we can express it as the probability of D complement multiplied by the previous 

expression.
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Let's take an example where an electrical system consists of four components: A, B, C, and D. 

Their reliability values are given as 0.9, 0.9, 0.8, and 0.8. The system will work if A and B work, 

and if either C or D works. Generally, if we represent the system diagrammatically, it will look 

like A-B, and then either C or D can work. So, the system will work if A works, B works, and 

either C or D works. Now, we want to know the probability of the entire system working, which 

means A works, B works, and either C or D works. This can be represented as the probability of 

(A intersection B intersection C) union with (A intersection B intersection D), or we can evaluate 

it directly. 

If we calculate it directly, then we can solve it in this way: the probability of A is 0.9, the 

probability of B is 0.9, and we want to calculate the probability of (C union D) working. We can 

calculate this by subtracting the probability of (C not working) and (D not working) from 1, i.e., 

1 - probability of (C bar) times the probability of (D bar). What is the probability of (C bar)? 

That is 1 minus 0.8, and the probability of (D bar) is also 1 minus 0.8. So, 0.9 times 0.9 times 1 

minus 0.2 times 0.2 gives us the probability of 0.7776. Therefore, we are able to calculate this. 

( ) [ ( )] ( ) ( ) ( )

0.9 0.9 (1 (1 0.8) (1 0.8)) 0.81 (1 0.04) 0.7776

P S P A B C D P A P B P C D=    =  =

   − −  − =  − =
 



Now, our second question is: what is the probability that component C does not work given that 

the entire system works? That means, in the case where A, B, and D work, but C does not work, 

the system will still work. We can represent this as the intersection of (C bar) with S, where S 

represents the event that the entire system is working. So, if we take the intersection of (C bar) 

with S, then C dot (C bar) will become 0 and will be removed. The only thing remaining will be 

PB PA PB PD and PC bar PA PB PD and PC bar divided by the probability that the system is 

working. The probability of the system working is already available to us, and we can calculate it 

as 0.9 times 0.9 times 0.8, and the probability of (C bar) is 0.2. This gives us a result of 0.1167, 

which means that there is only an 11.67% chance that component C is not working when the 

system is working.  

(C ) ( ) ( ) ( ) (C) 0.9 0.9 0.8 0.2
(C ) 0.1167

( ) 0.7776 0.7776

P S P A P B P D P
P S

P S

   
= = = =∣  
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There is another important term called the Total Probability Theorem. The Total Probability 

Theorem is useful when we have mutually exclusive events. For example, we may have two 

events, event A and event A bar, where A bar is the complement of event A. We divide the entire 

sample space into two parts, E and E bar, which represent these mutually exclusive events. Now, 



we want to know the probability of A, but we only know the probability of event A occurring 

with E or without E. 

To calculate the probability of A, we need to take the intersection of A with both E and E bar, 

since they represent the total sample space. Therefore, the probability of A is the sum of the 

intersection of A with E and the intersection of A with E bar. If the events are dependent, we can 

calculate this probability by multiplying the probabilities. However, if the events are 

independent, we can directly calculate the probability without using the Total Probability 

Theorem. The Total Probability Theorem is mostly used when there is a dependency between 

events. 

( ) [( ) ( )] ( ) ( )

( ) ( ) ( ) ( ) ( )

P A P E A E A P E A P E A

P A P E P A E P E P A E

=    =  + 

= +∣ ∣
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This total probability theorem if let us say we divide the whole sample space into here like it is 

shown in 5 events. So, k number of events, if k number of events mutually exclusive they do not 

share any common space. In that case, I want to calculate then so again, summing up the 

intersection probabilities from i equals 1 to k will give me the probability of A or conditional 

probability taking condition into account probability of Bi given multiple availability of A given 

Bi has already occurred.  
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So, this case, how is it useful, let us take an example that if we have an assembly plant where 3 

machines are there, B1 B2 B3 and they are making 30 percent 45 percent and 25 percent of the 

production, so 30 percent production 0.3 is covered by B1, 0.45 is covered by B2 and 0.25 is 

covered by total will be as we see total production is divided into a total sample space is divided 

into 3 parts total will always be 1, 0.3 0.45 0.25 will be sum will be equal to 1.  

Now, here, we know that this machine produces 2 percent defective. This machine produce 3 

percent defective and this machine produce 2 percent effective now, what will be the probability 

if I am having a product which I have selected from the output which is randomly selected, now, 

what is the probability that it is defective the probability that it is defective is equal to probability 

that it is coming from machine 1 and it is defective probability that it is coming from second 

machinery it is defective and third machine it is defective so we can get it.  

So, the probability of A is equal to product B1 into probability of A given B1 probability B2, A 

given B2 and probability of B3, A given B3. So, 0.3 into 0.02 like this, if you sum up we are able 

to get the probability of defective.  



 

There is a Bayes rule, what happens generally here in this example, as we see, the response 

variable is defective and the independent variables are the machine output, and they are 

defective, they are not changed, they are independent, but outcome which is the product 

defective is dependent on the machines. So, machines are independent variables and outcome is 

the dependent variable.  
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But in case of Bayes we can do the interchange, we can assess the probability for independent 

variables given the dependent variable is known so, here what we want to know independent that 

is the cause.   

So, we want to know the probability of cause based on the outcome, so, we want to check our 

cause based on the evidence or based on the observations which you are having. So, we want to 

know what is the probability that the outcome is coming from a section Br given that outcome A 

is observed, so, this is equal to we know that this is simple reverse formula, we know probability 

of Br intersection A is probability of A into Br into this but if you take probability of A here, this 

becomes probability of Br A is equal to this.  



So, this probability of A if you use total probability theorem, it can be expressed like this. So, 

probability of Br given A can be calculated using this formula, this can be also calculated in 

terms of conditional probabilities like this.  

So, we are able to calculate probability of Br given A which is equal to probability of Br 

multiplied with probability of A given Br divided by probability of B for all cases, probability of 

B into product A given Bi i equal to 1 to k like the example which are taken earlier we are 3 

machines were there B1 B2, B3.  

( )
( ) ( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

1
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P B A P B A
P B A

P A P B A

P B A P B P A B

P B P A B P B P A B

=
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 
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 


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∣

∣

∣ ∣
 

Now, we want to know opposite, we want to know what is the probability that our defective 

product which we have found belonging to machine B3 that means, given that product is 

defective, what is the probability that it has come from machine number B3 that means 

probability of B3 given A so B3 given A means, we can use this formula probability of B3 

multiply the probability of A given B 3 divided by for all cases for the Bi or we can directly have 

PA, which we have already calculated 0.0245.  

( ) ( )
1

( 3) ( 3) 0.25 0.02 10
( 3 )

0.0245 49
k

i i
i

P B P A B
P B A

P B P A B
=


= = =



∣
∣

∣
 

Now, what is the probability of B3 probability of B3 is 0.25 and probability of defective if this it 

is B3 is 0.02. So, this if we see solve then this comes out to be 10 divided by 49. So, that means 

10 divided 49 and is the probability that a defective product which are found belongs to machine 

number B3, similarly we can get for B2 B1 like that.  

So, it helps us to investigate the matters and see that what are the more important cases from 

where it might have come so, we can do cause analysis also or we can take the do the reverse 



analysis also using the Bayes rule. There is lot of lot of the things about Bayes which you can 

read more about it. 
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Next, we can move on to probability distributions. Probability distributions are common terms 

used like PDF and CDF. The set of ordered pairs x, f(x) is the probability function or the 

probability distribution or the probability mass function. We call this the probability distribution 

function or probability mass function for discrete random variables. There are generally two 

types of random variables - discrete and continuous. For a discrete random variable, the pair x 



and f(x) is called the probability distribution function or probability mass function. Here, fx 

represents the probability because the total probability of 1 is divided into various small 

probabilities for all outcomes. f(x) is always greater than or equal to 0, and the summation of f(x) 

will give you 1. f(x) is also a value between 0 and 1, representing the probability that the random 

variable x has a value equal to x. 

( ) 0

Σ ( ) 1

( ) ( )

x

f x

f x

P X x f x



=

= =

 

The cumulative probability distribution function is the summation of probabilities. If we want to 

know the cumulative probability up to event x, we can sum all the probabilities from minus 

infinity to x. For example, if x is 2, then the cumulative probability includes all probabilities up 

to x=2. As x increases, the cumulative probability also increases. If we want to calculate the 

probability for x=3, the cumulative probability for 3 includes the probability up to 2 plus the 

probability of 3. Therefore, the cumulative distribution is always increasing and never decreases.  

( ) ( ) ( )
x

t

F x P X x f t
=−

=  =   
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Then comes probability density function same both for discrete and for continuous both we are 

saying PDF, but there is a little difference in when we talk about the continuous random variable 

for continuous random variable this is called density function not the distribution function. So, it 

is called density function because here f(x) is equal to df(x)/dx it is the slope.  

So, fx is the unitless quantity x is not the unitless quantities, it is divided. So, this is the density 

function. So, it is not unitless while f(x) is unitless in case of discrete random variable as we see 

when we multiply dx then only it becomes unitless. So, when we multiply with dx and integrate 

now, integration of small f(x) versus all value for all values of x gives you so, area under this 

curve is always 1.  

Now, if I want to calculate the probability from A to B that is area under the curve from A to B 

that is A to B integration of small fx Fx dx this gives me the probability that it is lying between. 

Here in case of discrete we should be careful with the size whether equal and here, in case of 

continuous whether we put equal or do not put equal that does not make much difference because 

point probabilities are equal to 0, point does not have any dimension so, it will not have any area 

under this. So, because of that area under this point probabilities are 0. 

( ) 0

( ) 1

( ) ( )b

a

f x

f x dx

P a X b f x dx



−



 =

  = 

 



So, because of that equal sign here, where we whether we put or do not put does not make much 

difference, we could only we should only be careful because, so, that meaning is correct. But for 

discrete distribution, it matters if you see because value of x it will be counted or not it depends 

on the equal sign or not if I say x is less than x, then well probability of x will not be counted 

here. So, that makes a difference here.  
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For cumulative distribution functions for same continuous random variable I can get it by 

integration. So, that is from minus infinity to t*f(x)dx will give me the cumulative distribution 

for this we know that if t is infinity then f t will become 1.  

So, f t will look like something like this it will always reach to 1 finally, and will always start 

from 0 so, and if I take area under the curve for f(x) then it is always giving me 1 this we have 

seen already.  

 

tF(t) f (x)dx

( ) 1 as t .

f (x)dx 1

F t









−

−

= 

→ →

 =
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Now, there are two important terms which we use in engineering decisions, one is mean and 

another is variance means tells us where the centralization of the values is there and variance 

tells us how much spread is there how much is the variability is there in the values.  

So, for discrete random variable if I want to calculate mean it is nothing but summation of x 

multiplied by f(x), f(x) tells the wait that or how much proportion of time x is supposed to occur. 

So, if we multiply this and sum it up, we get the value of mu and variance has given us variances 

generally the second moment around mean.  

So, from mean how far is it so, from mean whether it is negative side or positive side whatever is 

the distance that is x minus mu since we are taking a square this will always give the positive 

quantity. So, this is whatever distance we have that is the square of that multiplied by the f(x). 

So, that gives me the variance for continuous random variables same thing is done f(x) is taken 

f(x) is taken it is integrated over f(x)dx. Similarly, x minus mu whole square f(x)dx, if you see 

integrated over full range, full range of full values of x.  
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Covariance is used for when there is a dependency among X and Y if there is if these are 

independent then covariance will be equal to 0. So, covariance of x and y is equal to the expected 

value of x minus mu x and y minus mu y that is if you saw that becomes the expected value of x 

into y or we can say intersection y and mu x into mu y.  

So, if they are independent then we know this is the value of expected value of x multiplied with 

the expected value of Y, which is mu x, mu y so that will be 0, but if they are dependent, it will 

not be equal to mu x mu y so, in that case only, we will have the covariance value.  

( )( ) ( . )xy x y x yE X Y E X Y     = − − = −
 
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We will discuss some important distributions. So, we will discuss some discrete random variable 

distributions, first this distribution is uniform, then Bernoulli, then binomial, then Poisson. So, 

uniform distribution as you know uniform is equally likely. So, if we say since we are talking 

about discrete, so, we have let us say, if there are k possible outcomes 1 2 3 three possible 

outcomes are there for like when we say tossing a coin, then we have two possible outcomes.  

If we say when we are rolling a dice, then we have 6 possible outcome. So, this gives us the 

probability now, all outcomes are equal probable, since all outcomes are equal probable, let us 



say probability is p.  And if I am talking about let us say 6 outcomes, then all are P so, this will 

become 6 p.  

So, summation we know should be equal to 1, so, 1 p will be equal to 1 upon 6 if I say K 

outcome, then k p is equal to 1 so, p will be equal to 1 upon k. So, the probability this p is 

nothing but f(x) is constant all outcomes are equally likely with the probability 1 upon K. The 

mean and variance for this distribution are given mean will be nothing but summation of this 

multiplied with 1 upon K because all f(x) is same so, xi into 1 upon k.  

So, summation of x divided by k will give the mu and sigma squared will be 1 upon k summation 

of x minus mu whole square.  
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Then there is another distribution which is used for Bernoulli like for tossing a coin, tossing a 

coin is actually equal probable so, we use we can use uniform. But if the two events are not 

equally likely, then we can use a Bernoulli for equally likely also, we can use Bernoulli but, there 

are two possibilities, let us say in case of reliability, we talk about two outcomes either success 

or failure.  

So, here the random variable represent whether the system is state is success or failure. So, 

success state’s probability is p if success state’s probability is p then by default failure 



probability will be 1 minus p that is we are representing as q now, Bernoulli distribution can 

have two outcomes either 0 or 1, 0 means unsuccess 1 means success.  

So, fx can be given as p to the power x q to the power 1 minus x. So, when I put x equal to 0 p to 

the power 0 will become 1 q to the power will become 1. So, that will become q if I put x equal 

to one p to the power 1 will become p, q to the power 1 minus one 0 will become 1.  

So, this becomes p, mean and variance for this is given as mean of this f(x) is p and variance has 

given us pq but generally this is for single item or single coin toss or single item failure, but 

many most of the time we are having multiple events happening together.  
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So, if a Bernoulli trial can result that means, if you do multiple Bernoulli trials, and each trial, the 

probability is same, probability of success or failure is same, probability of success is p and 

probability of failure is 1 minus p, then, this will become a binomial distribution. In binomial 

distribution, the Bernoulli trial is done n number of times.   

So, here we have two parameters, number of trials and probability of success p. So, binomial 

distribution probability can be calculated as nCx, because, for each outcome, let us say n 

outcomes are there, I am, let us say 4, I am doing the 4 trials, and so, 4 trials can be like all are 

success or one of them is failed. One of them fail can be in various ways like this.  



( ; , ) , 0,1, ,x n x
n

b x n p p q x n
x

− 
= =  
 

 

So, when I am talking about X number of successes out of it, let us say I am talking about 2 

success out of 4. So, in that case, the possible cases of 2 success out of 4 will be 1100 1110 1010 

01. There will be 6 possible states 01100011 and 0101 4C2, 4 into 3 divided by 2. So, that 

becomes 6 states.  

So, have what happens here in all state what is the probability, probability is same, this is 

success, this is success. So, p into p, p squared and q into q, q squared. So, the total probability 

will become this plus again p squared q squared like this.  

So, if I sum it up that becomes ncx p to the power x, q to the power n minus x, x is number of 

successes and n minus x will become number of failures, this gives me the total probability 

binomial probability for observing x number of successes out of x trials, where p is the 

probability of success, mean of this is given as like for Bernoulli it was p now, for e, n trials are 

done so, mean becomes n into p.  

And sigma squared is also summation of all sigma that is pq some n number of times that 

becomes npq as we see that calculation of this ncx factorial n divided by factorial n minus x n 

factorial x if I say n is very very large if n is 1000, if I want to know 10 out of 1000 then this 

probability calculation would be difficult, the value of factorial 1000 will become very high.  

So, in that case, this binomial distribution is many times approximated as either normal 

distribution or Poisson distribution. So, when value of P is somewhere around middle 0.5 0.4 0.5 

0.6 or around that somewhere in middle then in that case, this binomial distributions follows the 

normal distribution for normal distributions, we know there are two parameters mu and sigma. 

So, mu will be equal to NP here and sigma will be equal to square root of NPQ these two 

parameters if you use then for normal tables we can use to evaluate the probabilities.  
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Let us take an example, if x a random variable representing the number of failed components 

among 5 independent identical components, each component has one chance in 100 of failing. 

So, probability of failure here is p equal to 1 out of 100 that is 0.01.  

Now, I want to know x equal to 0 1 2 has a binomial distribution, we have already found that that 

is probability is 0.01 and n is equal to 5 now, I want to know the mean number of failure, so, the 

mean number of failure will be np, so, 5 into p so, 5 into 0.01 that will be 0.05 if I want to know 

the variance that is npq 5 into 0.01 0.99 0.0495 if I want to know the probability of exactly 1 

failure that means f of 1 that is our 5 c 1 and p to the power 1 and 1 minus p to the power 4. So, 

this we calculate we get the 0.048.  
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Then comes Poisson distribution, Poisson distribution is probability distribution where number 

of successes but here like here we were talking, in binomial we were talking about our samples 

all possibilities, sample space were the countable like 5 10.  

So, that was also discrete, but in case of Poisson we take the possibility in continuous space that 

is time. So, let us say we want to know how many failures in 100 hours in that case, we will be 

using Poisson distribution. So, here number of success occurring in a given time interval we 

want to know or any specific reason that means, let us say 100 kilometers someone has table 

what is the number of failures a person can observe or how many breaks a person will take.  

So, let us say mu is the average number of successes, mu is only parameter for Poisson 

distribution, that is giving the mean number of successes. So, probability of x can be obtained as 

probability of x number of successes I can get with the same parameter mu that is given as e to 

the power minus mu multiplied mu to power x divided by factorial x where x can be 0 to infinity 

and mean and variance both are equal to mu here.  

( ; ) , 0,1,2,
!

xe
p x x

x




−

= =  

So, the Poisson distribution has single parameter mu, and the parameter value is, here in 

reliability this mu is considered as lambda t where lambda is the failure rate or it is also called as 



arrival rate and t is the time. So, multiplying constant failure rate arrival rate multiplied by time 

will give you how many.  

So, let us say arrival rate is 10 per day, let us say our production rate is 10 per day. So, if I want 

to know how much is the production in 10 days that will be equal to 10 into 10. So, mu will be 

equal to 100 that is 10 is the arrival rate and t is the 10 days, so, that will become 100, same way 

I can this mu will be calculated.  

So, thus as we discussed earlier binomial distribution if the value of P is somewhere around 0.01 

0.1 means it is on lesser side or higher side let us say 0.99, in the case of 0.99 I can consider it 

equivalent to q, I will use q as p and rather than np as q in that case q will be equal to 0.01.  

So, I will use q as p in that case what will happen the probability will become smaller. So, when 

probabilities are smaller in that case I can use, convert the binomial distribution as the Poisson 

distribution.  

So, if p is let us say 0.01 and then what will happen q will be 0.99 so, mean will become n into p. 

So, if let us say n is 1000. So, 1000 into 0.01 will give me 10 so, my mu will become 10 in that 

case, I will be able to use the poison distribution with mu equal to 10. So, as we see here that 

binomial distributions many times is difficult to evaluate. So, we may be able to use the Poisson 

distribution as the.  
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Let x be the random variable which is representing number of failures and subsequent repairs of 

restorable over a 1 year period assuming x as a Poisson distribution with mean failure rate of 2 

failures per year.  

So, lambda is 2 per year. And we want to know the probability that there is no more than one 

failure no more than one failure means, we want to know the probability of x equal to 0 and 1. 

So, probability that x is less than equal to 1. So, I want to know the probability of cumulative 

probability up to 1, F 0 or 1.  

So, x equal to 0 to 1 e to the power minus, now 2 per year failure and I want to know for 1 year 

so, that will be 2 into 1 that will be mu will be equal to 2. So e to the power minus 2, 2 to the 

power x divided by factorial x, now, if I put x equal to 0 this will become e to the power minus 2 

into 2 to the power 01 so 1 plus if I put x equal to 1 this will become 2 divided by factorial 1, 1 

plus 2. So that will become 3 into e to the power minus 2 which if we saw we get 0.406.  

21

0

2
( 1) (1) 0.406

!

x

x

e
P X F

x

−

=

 = =  =  
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"So, that's all for now. For more details, you can refer to the Walpole book which can help you 

understand probability and the importance of continuous distributions in reliability theory. We 

will discuss them one by one in our upcoming lectures. Thank you." 


