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Hello everyone. So, we have been discussing about Goodness of Fit Test in last class we
discussed about the chi-square test. So, let us continue our discussion about chi-square test
last time we have taken an example and we have seen that if we have the exponential

distribution, how can we apply the chi-square test and see whether this fitting is acceptable or

not.

Now, let us see the same thing for Weibull distribution. So, if let us assume that there are 35
failure times available and which has been put absorved by putting 50 units on tests. So, we

have 50 units on test and we have 35 failure times.

So, that means, an 35th failure that it was sensored, whatever is the time at the 35th Failure
same time will be applicable for rest of the 15 sensor devices. So, 15 devices are sensored, at
the same point. So, here once we have this data we can use the MLE and MLE will give the

value for beta and theta this we are as taking as a pre calculated value here.

So, once we have this beta and theta then now, we let us see that whether we are able to
whether this is this fit to the Weibull is good or not. So, here my null hypothesis is that the



failure time to fill failure the test fitting to Weibull distribution and alternative hypothesis is it

is not following the Weibull distribution.

So, here failure times we have the 35 data we had. So, we have grouped in 5 classes. So,
generally as we discussed earlier that if you divide the data into classes by Sturgis formula or
some other. So, if you divided into 5 classes like like this, 1, 2 that is actually 6 classes. So,
this is a 6 classes initially, if you use the Sturgis formula studies formula for 35 and 30 both

comes around 6. So, we have the 6 classes.

Now, if we divide it into the 6 classes, we have in first class like 10 up to 28. So, if you see
here up to 28 that means up to here, so, 5 plus 5, 10 failures are up to 28. Then second class is

up to 56 so, 56 means here, that means, 5 plus 5,10 plus 1, 11, 11 failures are in up to 56.

Then for 84 that means 56 to 84 so, 84 is coming somewhere up to here that means, 5 plus 2,
7, 7 is lying into third interval and up to 112. So, for 112 is up to here 1, 2, 3 data points, 3
data points in 112 and up to 140 is because of a test was last failure was observed is 140. So,
test continued up to 140, 35th failure was at 140. So, 139.7 almost same as the 140.

So, 112, 3, 4, 4 failures are in from 112 to 140 and hear the sensoring happened, that means
the rest of the 15 failures were not happen, so that 15 devices were sensored at this point.

So, that means the 15 devices will fall somewhere from 150 to infinity, because these are not
failed. So, these 15 devices will fail somewhere in 140 to 50. So, that comes out to be 15. As
we see here, again, these 2 data points if we see 3 and 4, they are falling below the 5. So,
what we have to do, we have to combine these 2. So, this interval, rather than taking from 84
to 112, and then 112 to 140, we will take 84 to 140 directly and so that number of failures

will become 7 here.

Now, we have the 5 intervals here, we have the 5 classes. And in 5 classes, we have this
number of failures, which are all above 5. So, now we can use the same formula as we did
earlier. We find out the each class probability, probability of this class. How can we get, we
can use this formula probability as we discussed earlier one minus e to the power minus t

upon theta raised to the power beta.

So, if I am if I want to know let us say this is t1 this is t2, this is t3, this is t4, this is t5, | want

to know the failures between upto t1, so upto t 1 is F t1. So, this will be my first value this



value would be coming here, the second interval, second interval is F t2 minus F tl
probability of falling in second interval is F t2 minus F t1 this is nothing but 1 minus e to the
power minus t1, t2 upon theta raised to the power beta minus 1 plus e to the power minus t1
divided by theta raised to the power beta.

So, 1 and 1 can get cancelled. So, in a way we can write it as R t1 minus R t2 so, that means,
e to the power minus t1 upon theta raised to the power beta this is plus sign so, this will come

first and this is negative sign this come next, minus t2 divided by theta is to the power beta.

So, this we can apply a formula here and this formula will give me the probability of these
interval intermediate interval and last interval is nothing but one last interval is the reliability
that means, all the failures which are not happening up to 140 that will go to the last region.
So, that will be nothing but e to the power minus this my t6 if | say, that is t6 minus t6
divided by, sorry, not t6, t5, t5 divided by theta raised to the power beta.

So, these calculations | have made already which is shown here, | will show the same thing in

Excel because I have copied this all from Excel which | have already solved here.
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So, here if | see chi-square Weibull here so, we had this, n number of observations also we
already seen. Now, let us see if I, how did we calculate the P, for first P that is 1 minus that is
equal to n lambda and this is 11 see here theta is 112.9 and beta is 1.032. So, 1 minus e to the

power minus t divided by theta raised to the power whole betta that is my first region.
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And second region as you see that is exponential for t 1 minus that is lattice t 1 minus lattice t
2 that exponential for t 1 is D4 and t 2 is D5 divided by same 112.92 is to the point 1 minus r
raised to the power 1.032. So, this gives me the second same will be followed here and third
one will be nothing but the reliability at 140 that will be exponential minus D7 divided by
this.

So, we are able to get the probability for each interval, this interval probability summation
will always be 1 and how do I get the expected number of failures expected number of
failures is nothing but the number of devices which | have put on test number of devices

which | have put on tests for 50.

So, this will be equal to 50 multiplied by probability. And this gives me the number of fail
expected number of failures because of this distribution fitting from the distribution fitting
how much failures 1 am expecting in each failed, each interval here. And then again, 1 will
use the same formula for chi-squared statistic that is O minus E whole squared divided by E

these values comes out to be here and once | take a summation of this, this becomes 1.3916.

So, if I want to know the critical value critical value, | will take the number of intervals is 1,
2, 3,4,5from 5, 1 is lost, because, 1 because 1 interval is already known, if other intervals
are known, like if you know if I know the 4 interval fifth interval is already known, how

much failures will be there in the fifth interval.

So, one degrees lost there and other degree is lost in estimation of parameters Weibull
distribution is 2 parameters. So, from 5 this will be equal to 5 minus 1 for the grouping part

and minus 2 for the number of parameters.

So, | have critical value so, 1, 2, 3, 4, 5, yes, so, my number of, my this what | say number of
degrees of freedom becomes 2. So, this will be critical value will be 0.12. This was because it
was a Weibull distribution. So, here critical value become point 4.6 which is much lower
much higher than the 1.39, since our statistic value is lower than the critical value our null
hypothesis is accepted and because of a null hypothesis accepted we can say that this data
follows the Weibull distribution.
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So, same thing we have got here these values were wrong. So, that guys, which | took 6.25
rather than 6.25 should be 4.60. So, here again as we have seen that chi-square test, same as
we have done for normal, we have done for exponential Weibull you can do it for any
distribution, same process, because it is not dependent on the distribution, you just need to
divide and see in each interval, how many failures are the expected and how many failures
are actually happening, but as we see here, for chi-square distribution, we require large data

size, if sample size is small, we will not be able to do this properly.
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So, for that purpose for different different distributions some specific test are suggested. That
for exponential distribution Bartlett’s test is used. So, by using the Bartlett’s test, you can be



you can find out whether the data is following the exponential distribution or it is not

following the exponential distribution.

So, for Bartlett’s test like for chi-square test, this was a specific distribution which could be
uneven, but here we are talking about the exponential distribution only. So, the null
hypothesis is that the failure time follows the exponential distribution and alternate

hypothesis is that times failure times does not, do not follow the exponential distribution.

Like chi-square test we had the chi squared value was equal to O minus E, O i minus E i
whole squared divided by E i and summation over i equal to 1 to n, this was our statistic, here
the statistic is B for Bartlett. So, Bartlett test has this statistic where, this is like here we have
the data. So, generally r is the number of failure. And so, if you do not have here it this is also

applicable for sensor data.

So, r is the failures data only the time number of failures, you may not have all the failures,
then also you can use the same. So, it follows the chi square, this statistic which you have
used this B also follows the chi-square distribution. So, the distribution would be same, but
the statistic is different the calculation which you are making this statistic chi-square is also
following chi-square distribution, this statistic B also follows the chi-square distribution.

So, the critical value we will obtain from the chi-square distribution and how the Chi but here
the null hypothesis will be only accepted by the 2 sided comparison that means, the B value
should be higher than the left limit and lower than the right limit. So, left limit is 1 minus
alpha by 2 r minus 1 and right limit is alpha by 2 r minus 1.

So, and that is also again right side value that is leaving the area on the right hand side. So,
this is the lower limit, lower bound this is the upper bound. So, if the, if my B values falling
within this region | will accept that my time to failure are following the exponential

distribution.
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Otherwise, we may assume that so, let us take an example that 30 units were put on test out
of which 20 failures happened. So, 10 units were sensored, but by just looking at the time to
fill the data also we can find out whether this is following the exponential distribution or not.

So, we want to perform the Bartlett test.

So, Bartlett's test if you want to do, how much is r number of failures that is 20. So, and as we
see here for Bartlett test, we want to sum up 2 things, one is t i submission and other is In of t
i submission for number of failures. And we need r value rest of all are, so, if we know the r

value submission of t i submission of In of t i, we will be able to calculate the B value.
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So, to do the same this is given here but | have done this exercise in Excel sheet also like this
is my data T. So, these are my 20 failures if I want to know the mean, mean would be 836.
So, not required right now, but we can do that if required let us say for this data since it
though it is not part of problem, let us see, | want to know what is my because this is the

exponential distribution 1 am assuming how much is the lambda if | want to calculate for this.

So, if | want to calculate the lambda then how do I calculate the lambda first | take the
summation of failure time and then | also take the summation of sensor time, let us assume
that all the failures would, whenever last failure was observed at that time the test was
terminated that means, rest of the 10 devices only work for this much 10.7 hours. So, this is
cumulated 107.

So, how much is total time total time is equal to 836 plus 107 943.3 and how many failures |
observed. So, this becomes time and how much is r, r is 20. So, my lambda, lambda is equal
to r divided by so, r is 20 and total time cumulative time is 943 though failure time
submission is only 836 but there is a 10 devices which have worked for 10.7 hours each
without failure. So, that time also need to be summed up added up with this. So, total time
becomes 943.3 and my lambda comes out to be 0.0212.

So, this is now how we use MLE for calculating the lambda, when sensor devices are there,
so, this is just an example, we want to just check that whether this data is following the

exponential distribution or not.
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So, to do that, we need the 2 values, we would need the summation of T i and we need the
summation of log, log of T i. So, T i is already here we will calculate log of | here that is In of
Tilnof Tiand if we take the both summation this becomes In of summation of T i this

becomes summation of In of T i.

So, my B value which I have used here, that is formula is 2 into r, r is 20 here multiply by In
of summation of T divided by 20 minus, minus In of t summation of In of t divided by 20.
Two things one is summation of T divided by 20 and another is summation of In of I am
taking log of that so, log of summation of T divided by 20 minus summation of log of values
divided by 20 and whole divided by 1 plus r plus 1 divided by r plus 1 is only divided by 6

into r. So, 21 divided by 6 into 20 this if we slove my value of B comes out to be 18.

Now, whether my value, B value is falling in the region or not. So, for that we have to do the
chi-square assessment. So, for chi-square we have the r minus 1 degrees of freedom here

because only the number of intervals is there. So, here only one value is lost.

So, we have so, we want to know 1 minus alpha by 2 alpha is 10 percent 0.1 so, 1 minus 0.1
divided by 2 is 0.95, if I if you want | can write it here is 1 minus 0.1 divided by 2, 1 minus
alpha by 2 you will get the same and right side value is alpha by 2 that is 0.1 divided by 2,
0.05 and degrees of freedom is 19.

Now, if you see here this might B value is well within this region. So, that means, my null
hypothesis is accepted or | can say my data is following the exponential distribution. So, I can
assume that my data is following the exponential distribution.
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30 units were placed on test until 20 failures
observed. Following failure times were obtained
- 501 209 311 9%5 363 991
26 849 62 32 304 877
142 46 25 18 115 846
886 107

Perform Bartlett's test to verify if exponential
distribution is applicable.

o r=20;30, Int; = 6394 )1, ¢; = 8363
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- The null hypothesis is accepted

: 1 Example 339
yl¢

30 units were placed on test until 20 failures
observed. Following failure times were obtained

-501 29 311 95 363 991
426 849 62 32 304 877
142 46 25 18 115 846
886 107

Perform Bartlett's test to verify if exponential
distribution is applicable.
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+ These tests compare following hypothesis
- Hy: the failure times follow Weibull distribution”

- H,: the failure times did not follow Weibull
distribution. -

+ Test Statistic is

bk D12k, ntigs -t ]
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A kL [(ntiyy-int)/M
- Where, ky :JiLkl = ['T"
« Null gypgt_ﬁg’si’é'is accepted if
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Same thing what | have done here? Same thing is given here this is not 118, this is 18. So,
null hypothesis is accepted. Similarly, we may have another test for Weibull distribution. So,
these are specific distribution like we use them Bartlett for exponential, we can use Mann’s
test for the Weibull distribution.

So, we can find out whether data is following the Weibull distribution or not. So, our null
hypothesis is times to failure shows the follows the Weibull distribution and alternate is that

time to follow does not time to fill it does not follow the Weibull distribution.

What is the statistic here, the statistic given by Mann’s is this M equal to this and what is k 1
here k 1 is floor value of r by 2 that means, whenever | divide r by 2, | have to take only
integer part the everything coming after the decimal point is dropped out and k 2 is r minus 1

by 2 that means subtracting 1 then dividing by 2.

So, definitely if it is even number then you will get the integer if it is odd number then point
15 will be dropped and you will have the number. So, you will calculate, what is Mi here like
we are using Mi here, Mi here this Mi is nothing but Zi plus 1 minus Zi and what Zi, Zi is
like as we have seen earlier that is like we saw for the Weibull distribution In of In 1 upon 1
minus Ft. So, here so this is minus In of minus In this minus sign is missing here | will add

that In of minus In or | can say In of minus In 1 minus Ft.

So, this value will give me and Ft is how much this, here we were using | minus 0.2 divided
by n plus 0.4 if you want you can use that this is another statistic which is you would like if
you change the value of n you will get, you will get this another set of the way of doing the

median ranking.

So, here 0.5 and 0.25 is used. So, since he suggested 0.5, 0.25 we can go with that otherwise,
you can use 0.3 and 0.4 also i minus 0.3 divided by n plus 0.4. So here this gives us the Zi.
So, which is very similar to what we have done in the LSC and this value here this M follows

the considered to be following the F distribution.

So, critical value is supposed is coming from the F distribution here. So, F distribution critical
value, we have to take the right side distribution for alpha, alpha is my significance level 0.1
or 0.05. So, if the value of M falls below this it is accepted if it is not falling, if it is equal or

higher than that, then it is not accepted.



(Refer Slide Time: 23:09)

+ These tests compare following hypothesis
- Hy: the failure times follow Weibull distribution”

- H,: the failure times did not follow WelbuII
distribution.

+ Test Statistic is

b= ky Ziz km[lnt,“ Int; /M]
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+ These tests compare following hypothesis
- Hy: the failure times follow Weibull distribution:”

- H,: the failure times did not follow WelbuII
distribution.

+ Test Statistic is =
B kj e kl“[(lntm ~Inty) /ML
Ly “zll 1[ Inti41-Int;)/M;
- Where k1 /k‘z = [ ‘[ z“"‘_@
- &= nfin( 1—M)]\ =
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Test Statistic is

ki XiZe,,, [(Int .y —Int,)/M]
kB2, [(In teyy — Int £)/M,)

r r—1
Where, k, = IEJ k, = lTI M, =Z., —Z

i—05
Z; =1In [In (1 - )]
n+ 0.25

So, let us say if we have the exam, let us take an example, that we have the 35 failure points

here, out of 50 we had put 50 devices on test out of his 35 failed and for 35 this is our data
and so, 35 divided by 2 will be 17.5 and floor value of this will be 17. So, that will be my k 1
and k 2 is equal to r minus 1 that means 34 divided by 2, 17 floor value of 17 is 17only.

So, my k 1 and k 2 both turns out to be 17. From this | can calculate the value of M my
purpose is to calculate M. So, as | see here to calculate M, what are the things | need to know
if you see | have to take a summation of i equal to 1 to k 1 plus 1 to r minus 1 and divided by
i equal to 1 to k 1 and here what are the values | am using In of ti minus 1, minus In of ti In of
ti plus 1 minus In of ti. So, | have to calculate In of ti plus 1 I have to calculate In of ti and
this has to be divided by Mi, and Mi is what, Mi for Zi plus 1 minus Zi.

So, if | measure Z if | calculate In of t, I will be able to use this so what | have done we
covered basic data is In ti these 2 i already have so what | did | calculate the In of t i because |
know | need to have the In of ti and ti plus 1 is the next value for i plus 1. But and next value
IS Zi, Zi is nothing but the probability. So, this test we are doing for Weibull distribution, so
for Weibull distribution we can get this Zi, Zi is In of minus In 1 minus F t. Sorry, and F tis i

minus 0.5 divided by n plus.

So, we will apply the same formula i minus 0.5 divided by n plus point so, i is known to us
because Z is function of only i. So, if I know the i, I will know the Z same formula we have
applied I have done this in Excel sheet which we will share and you will get this values. So,

Zi values are known to us. Now, Mi values also we can get. What is Mi? Zi plus 1 minus Zi.

So, that means this minus this will give me this. So, these values | will get by subtracting
from. So, | will get one value less here because | have to subtract this value from this so, one

value will be less.



Similarly, In of ti plus 1 minus In of ti. So, this In of ti plus 1 minus In of ti we can write it as
In of ti plus 1 divided by ti. So, that I that | can subtract or | can do like this also. So, In of ti
plus 1 this is ti plus 1 divided by ti. So, once that means or | can take the subtraction so, this
is this minus this if I take 1 will get this 1.988 minus 1.262 will give 1.726.

So, this is subtraction from this | can get subtraction also or I can simply take division also ti
division and take the In whatever the will it will give you the same value. Similarly, now, |
have got these values. So, these values divided by Mi here also and here also. So, | will
divide this by Mi, Mi is here this value is here, so, this becomes my value.

So, here if you see now, | have calculated this whole value. So, this whole value | have
calculated here, so, if | take summation of this, now, | have to take the summation in 2 parts,
one is from k 1 plus 1 to r minus 1 and another is i equal to 1 to k1. So, 1 to k1, k 1 is 17.
That means one set is here and another set is from here to here. Since | have only 34 data

points r minus n, ris 35 but | am taking only up to 34.

So, two 17, 17 data sets | have, | will take the summation here, I will take the summation here
these 2 summations | will calculate and these 2 summations then we are comparing. So, from
k plus 1 to r minus 1 that means this summation and this is i equal to 1 to k1 that is the
summation. So, this summation let us say this is S2 and this is S1. So, | will take S2 upon S1
and S2 is multiplied by k 1 and as soon as multiply by k 2, so, this is k 1 k 2 once | do this I
will get the value of n.

So, this simple formula | have applied in Excel and | have calculated this value of M. And
how do | get the critical value of F. So, critical value of f is by taking the F distribution and
taking this inverse of F distribution for right side values that is alpha 2k 2 and 2k 1. Degrees
of freedom for F distributions are 2k 2 and 2k 1, 34, 34. So, once | use this, | will be able to

this I have done here also same thing.
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k1

- —
B C 0 E F G H I J K M N 0 P Q R S
2 504 3920 071107 006515 0020, 030157
2 514 3340 064592 006319 0.5 244831
2 60 4094 05873 006147 0021 034869
23 613 4116 052126 005998 0002 0.02718
U 6L4 4117 046128 011623 0069 059546
25 656 4184 040261 005756  0.003 0.05289
% 658 4187 034505 00566 00% 17374
2 726 4285 028845 005581 0077 137707
28 784 4362 023263 005517 0247 448284
29 1004 4609 017746 005468 0037 17654
30 1106 4706 012277 005434  0.007] 013263
31114 4713 006843 005415 0059 109425
321182 4772 001428 005411 0010 Q18669
33 1194 4782 003982 00523 0101 186404
31321 4884 009405 005452 0056 102603
35 1397 49339 04857
326497
50
3
1 M SUMI(20:136)/(842°SUM13:19))
| Feit 177207
( v

a7

E
3an
3497
3.605
s
EXES
384
3920
3940
4094
416
4117
4184
4187
4285
4.362
4609
4706
a3
am
s
4884
4939

Vi | Mo

6

-1.16196
107746
0.99742
09123
084838
017845
0.71107
05459
058213
052126
046128
0.40261
0.34505
028845
0.23263
017746
012277
0.06843
0.01428
003982
0.09405
0.14857

0.0845
008004
0.07619
007285
006993
006738
0.06515
006319
0.06147
005938
0.11623°
005756

0.0566
005581
0.05517
0.05468
005434
005415
0.05411
005423
0.05452

0.025.
0109,
0.005

0120,

0.113
0.076,
0.020.
0.155,
0.021
0.002/
0.069
0.003

0.29042
13617
0.07114
164157
1.61932;
113155
0.30157:
244831
0.34869.
002718
059546
Q.05289

T
] C 0 3 F G H | J X M N 0 P Q R s
23 613 4116 052126 005998  0.002 0.02718
U614 4117 046128 011623 0069 05954
25 656 4.184 040261 005756  0.003 0.05289
2% 658 4.187 034505 00566 0098 17374
21 726 4285 0.28845 005581 0077 137707
28 784 4362 -0.23263 005517  0.247 4.48284
29 1004 4609 0.17746 0.05468 0.097 17634
30 1106 4706 -0.12277 0.05434 0007 0.13263
31 1114 4713 0.06843 005415 0059 1.09425
32 1182 4772 001428 005411  0.010 0.18669
33 1194 4782 003982 005423 0101 186404
34 1321 4884 009405 0.05452 0056 1.02603
35 1397 4939 0.14857
32.6497,
50
s
17 M 1.62154
7 Ferit 2FINV.RT(0.05,842*2,8 a19)




Hn

3

5
2%
7
28
29
30
3
R
3
£
35

0 E f G
613 4116 052126 0.05998
614 4117 046128 0.11623
656 4.184 040261 0.05756
658 4.187 0.34505 0.0566
726 4285 0.28845 005581
784 4362 0.23263 0.05517
1004 4609 017746 0.05468
1106 4706 0.12277 0.05434
1114 4713 006843 0.05415
1182 4772 001428 0.05411
1194 4782 003982 005423
1321 4884 0.09405 0.05452
139.7 4939 0.14857

0002 002718
0.069 0.59546
0003 0.05289
0098 17374
0077 137707
0247 448284
0.097 17634
0.007 0.13263
0.059 1.09425
0010 0.18669
0101 186404
0.056 1.02603

32.6497,

M | 1.62154
Ferit L

So, this same table which | have shown here there, it is the same and if you see here, how do |

calculate M, M is k1 into summation of the second part red part and divided by k2 that is B

42 and the green part that is 13 and this when I take this gives me the M and F critical are how

| have got that is the F inverse rightside values for this | have taken for 0.05 that means 5

percent, 95 percent confidence level.

If I want | can take the 10 percent also or anything else and my degrees of freedom is k2 into

2 and k 1 into 2 and | use my critical value is 1.72. So my M value is lesser than critical

value. So, | can say that but it is quite close. So, but still I can say that my Weibull

distribution is justified here for this use.
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M < Ferit a2, 28,

Null hypothesis is accepted

So, here as we discussed today that we can have specific checks we can find out whether a

particular distribution is followed or not based on general tests like chi-square test or we can

also use a specific test designed for the purpose. So, thank you. We will continue our

discussion in next class.



