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Now, we have discussed how to encode the number of hidden layers, the number of

neurons  to  be  present  in  the  each  of  the  hidden  layers  that  is  the  topology  or  the

architecture of the network and how to encode the connecting weights the coefficient of

transfer function the bias values inside that particular the GA string. So, ultimately the

GA string is going to carry information the complete information of the neural network;

that means, it will carry the information related to topology, it will carry the information

related  to  the  connecting  weights,  then  the  information  related  to  the  bias  value  the

coefficient of transfer function.

 So, this particular GA string is going to carry the whole information of this particular the

network and we are going to take the help of the batch mode of training to optimize or to

evolve  this  particular  the  network.  Now, this  shows  actually  one  flow  chart  or  the

schematic  view  like  how  does  it  work.  Now, let  me  explain  with  the  help  of  this

particular flowchart the working principle of this genetic neural system.



Now, as I told that genetic algorithm is nothing, but a population based approach. So, I

have got a population size N and these particular population of solutions are generated at

random. Supposing that the first solution is something like this these are binary coded

GA the second solution is something like these and the last solution is something like

this. Now, if I concentrate on a particular the GA string that is the first GA string, it will

carry the full information or the whole information of these particular the network.

Now, let us see how to implement the batch mode of training for this type of the network.

So, I am just going to discuss the batch mode of training of this particular the network.

Now, GA starts  with a population  of solution and we create  the initial  population at

random we put generation is equals to 0. Now, here we have got a check the generation

whether it is greater than equals the maximum number of generations. Now, if it is yes

that is the end of the algorithm and if it is no so, we concentrate on the first GA string;

that means, we are going to concentrate on the first GA string and we put GA string

equals to 0.

And, here there is another check whether the GA string is greater than the population

size. Now, if it is no then we start with the training case there is the first training case;

supposing that we have got some training scenarios and the total  number of training

scenarios  let  me consider  I  have got  capital  L number of training scenarios.  Now, a

particular training scenario carries information of the input and your the output similarly

we have got capital L number of training scenarios. Now, corresponding to the first GA

string, so, we are going to concentrate on the training cases or the training scenarios.

Now, here so, corresponding to the first GA string my neurotic is ready and I am passing

all the training scenarios one after another. For example, say here I have got a check

where  the  training  scenario  or  the  case  is  greater  than  the  maximum case  that  is  a

maximum number of training scenario. Now, if it is no then we calculate the output of

the neural network. So, as I told that this particular neural network is indicated by. So,

this particular the GA string.

So, we will be getting the output of this particular network and we use case equals to

case  plus  1;  that  means,  I  am just  going to  pass  all  the training  scenarios  one after

another. The moment  it  satisfies  so,  this  particular  condition,  so,  what  we do is  we

calculate the fitness of the your the GA string; that means, after passing all the training



scenarios all capital L training scenarios we try to consider the fitness we try to calculate

the fitness of these particular the GA string and supposing that the fitness of the GA

string is denoted by f 1 and so, here we have got GA string equals to GA string plus 1;

that means, we go for the second GA string; that means, we are going to concentrate on

these particular your the second GA string.

And, once again for this particular your the second GA string. So, my network is ready

once  again  we will  pass  all  the  training  scenarios  and  we  will  be  getting  so,  these

particular f 2 and this particular process will go on and go on and the moment it reaches

this particular the criteria that is GA string is greater than the population size; that means,

your the fitness information for the whole population is ready for us; that means, we

have got the fitness information that is f 1, f 2 up to your f n.

And, once you have got the fitness information for the whole population, now we are

going to modify so this particular the population of solutions using the operators like

reproduction crossover and mutation. Now, the principle of reproduction crossover and

mutation; so, those things actually I have discussed in some of the earlier lecture. Now,

so,  this  particular  process will  go on and go on and this  will  complete  actually  one

iteration  or  one generation  of this  particular  GA and GA through a large number of

iteration  we  will  try  to  find  out  your  some  optimal  design  of  these  particular  the

networks.

And, as I told that there is a possibility that you will be getting multiple solutions; that

means,  the  multiple  optimal  neural  networks  and you can  use any one  out  of  these

multiple optimal neural networks for predicting the input output relationship. Now, this

is the way actually the genetic neural system works the working principle of this genetic

algorithm genetic neural system we have already discussed.
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And,  now actually  what  we  are  going  to  do;  we  are  going  to  solve  one  numerical

example just to make it more clear. Now, here I am just going to solve one numerical

example and we are going to solve this numerical example and I am going to give the

statement of this numerical example.

 A binary coded genetic algorithm is used to update the connecting weights, coefficient

of  transfer  function of a neural  network as shown below. So,  this  is  actually  a very

simple network having say three layers – input layer, hidden layer and output layer. So,

on the input layer there are two neurons; on the hidden layer there are three neurons and

the output there is one neuron. So, this is nothing, but actually a 2-3-1 fully connected

the network and let us see how to optimize so, this particular your network with the help

of a binary coded algorithm.
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Now, the rest of the statement of the problem is as follows. The neurons of the input and

hidden layer and output layers are assumed to have transfer function of the form y equals

to x, that is the linear transfer function for the input layer, y equals to one divided by one

plus e raised to the power minus a 1 x that is nothing, but is your the log sigmoid transfer

function for the hidden layer. And y equals to e raised to the power a 2 x minus e raised

to the power minus a 2 x divided by e raised to the power a 2 x plus e raised to the power

minus a 2 x. So, this is actually the tan sigmoid transfer function.

And, the connecting weights v and w we are going to vary in the range of 0 to 1, the bias

value will vary in the range of 0.001 to 0.01 and the coefficient of transfer function that

is a 1, a 2 are going to vary in the range of 0.5 to say 2.0. Now, we are going to show one

training scenario and for this particular training scenario actually we will have to find out

what should be the output and that output we will have to compare with the target output

just to find out the deviation in prediction.
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Now, the training scenario as I told is something like this and the training scenario is

nothing, but the input output relationship now there are L capital L obtaining scenarios

the out of that the first one is as follows. If I 1 is 0.6 and I 2 is 0.7, then output is 0.9. So,

this is nothing, but is your the input-output relationship, known input-output relationship.

Now, if you concentrate on the GA string the GA string will carry information of this

particular network; that means, your these 2-3-1 neural network and it is having the fixed

architecture and we are going to use 1 2 3 4 5 5 bits to represent each of these particular

the design variables. For example, 5 bits are used to represent v 11; the next 5 bits are

used to represent v 12 and so on. So, this particular GA string is going to carry the full

information or the whole information of a fixed architecture that is 2-3-1 neural network.

And,  as  I  told  that  our  aim  is  to  determine  the  deviation  in  prediction  so,  for  this

particular the training scenario.

Now, let us see how to find out so that particular your the deviation in prediction
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Now, to determine the deviation in prediction, so what you will have to do is the first

thing you will have to find out the corresponding to this particular GA string. So, you

will have to find out the decoded value.
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For example,  say if  I  just  want  to  find out  the  decoded value corresponding to  this

particular your the 5 bits which are used to represent the v 11. So, this is nothing, but

10110. The place values are as follows 2 raised to the power 0, 2 raised to the power 1, 2

raised to the power 2, 2 raised to the power 3, 2 raised to the power 4 and the decoded



value is nothing, but 1 multiplied by 2 raised to the power 4 plus 1 multiplied by 2 raised

to the power 2 plus 1 multiplied by 2 raised to the power 1. Now, this is nothing, but is

your one 16 this is nothing, but is your 4 and this is 2. So, this is nothing, but is your 22.

So, the decoded value corresponding to these 5 bits used to represent v 11 is nothing, but

is your 22 and once you have got the decoded value, now we can find out the linear

mapping rule. We can use a linear mapping rule to find out the real value corresponding

to  that  binary  sub string.  Now, what  you do is  now we have  already  discussed  the

decoded value of that and we know the range the range is nothing, but 0.0 to 1.0.

So, using the linear mapping rule which I have already discussed the linear mapping rule

so, we can find out the real value corresponding to this v 11. So, v 11 is nothing, but v 11

minimum that is your 0.0 plus v 11 maximum that is your 1.0 minus v 11 minimum that

is nothing, but is your 0.0 divided by 2 raised to the power l; l  is nothing, but your

number of bits used to represent that is 2 raised to the power 5 minus 1 multiplied by the

decoded value.

Now, if I just write down this rule that is v 11 is nothing, but v 11 minimum plus your v

11 maximum minus v 11 minimum 2 raised to the power l minus 1 multiplied by the

decoded value.  So, this is nothing, but the linear mapping rule. Now, here small  l is

nothing, but is your 5 because we are using 5 bits to represent v 11. So, very easily we

can substitute all the numerical values and we can find out what should be the real value

corresponding to your v 11.
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Now, the same principle actually we can use to find out the decoded value and the real

value for each of the variables. Now, for this particular v 11, so, I have already discussed

like how to find out actually the real value. now, you follow the same principle to find

out the real values for each of these particular connecting weights v 11 then 12, 13, v 21,

v 22, v 23, w 11, w 21 and w 31 and we can find out their corresponding real values. So,

we can find out their corresponding real values,.

Now, the range for your this particular a one that is the coefficient of transfer function for

your the log sigmoid transfer function. Now, here the range is 0.5 to 2.0 and once again

by following the same principle you can find out what should be the real value. Similarly

corresponding to a 2, I can find out the real value for b, I can find out the real value and

the range for b is nothing, but 0.001 to 0.01.

So, I can find out the real values for each of these particular your the variables and a

once  you have got  the real  values  so,  my network is  ready and once this  particular

network is made ready now, I can pass actually your the training scenario that is your the

known input output relationship.
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For example, if I pass the set of inputs I will be getting the output, let us see how does it

work. It is very simple. So, this I O1 that is nothing, but the output of the first neuron

lying on the input layer is nothing, but is your I I1 that is the input of the first neuron

lying on the input layer plus b is the bias value and if you just substitute the numerical

values, so, you will be getting this I O1.

Similarly, I will be getting I O2 that is the output of the second neuron lying on the input

layer is nothing, but the input of the second neuron lying on the input layer plus bias

value and if you substitute the numerical values. So, it will be getting this as I O2.
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And, once you have got this particular thing so, now, actually very easily I can find out

so, what should be the your the input of your the hidden neurons.

So, this your H I1 that is the input of the first neuron lying on the hidden layer and I am

also adding some bias value b. So, I will be getting. So, this H I1 is nothing, but I O1

multiplied by v 11 plus I O2 multiplied by v 21 plus the bias value is nothing, but these,

so, I will be getting this particular your the input. Now, similarly I can find out the input

of the neuron second neuron lying on the hidden layer plus bias value. I can also find out

the input of the third neuron lying on the hidden layer plus bias value and once you have

got this particular the inputs of the hidden neurons then using that the transfer function

so, very easily I can find out what should be the output.
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Now, so, this H O1 is nothing, but the output of the first neuron lying on the hidden layer

then comes here H O2 is the output of the second neuron lying in the hidden layer and

that is coming to be equal to 0.791418. Similarly this H O3 that is the output of the third

neuron lying on the hidden layer and this is coming equal to be your 0.65 then 0545 and

once you have got your the output of your the hidden neurons so, very easily we can find

out what should be the input of the neuron lying on the output layer.

So, this O I1 is nothing, but the input of the first neuron lying on the output layer and we

are adding the bias value and this OI 1 is nothing, but HO 1 multiplied by w 11, HO 2

multiplied by w 21, HO 3 multiplied by w 31 plus b. And, if you substitute the numerical

values so, we will be getting the numerical value something like this and this is nothing,

but the input of your the output layer.
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And, on the output layer we have got some transfer function so, using that so, very easily

we can find out what is your O O1 that is nothing, but the output of the first neuron lying

on the output layer and we can use this your the tan sigmoid transfer function and it will

be getting the calculated output is nothing, but 0.981265.

Now, this calculated output will have to compare with the target output and this target

output is  nothing, but is your 0.9 and we can find out the deviation in prediction is

nothing, but 0.9 minus 0.981265, so, this is actually nothing, but the deviation. So, the

deviation is coming to be negative here. So, deviation is minus 0.081265. Now, this is

what happens after passing actually the first training scenario. Similarly, we are going to

pass  the  second training  scenarios,  third  training  scenarios  and all  capital  L training

scenarios we are going to pass one after another.

 Now, this particular deviation it could be either positive or negative and that is why

actually  what  we  do  is  we  try  to  consider  the  mod  value  of  these  particular  your

deviation and the mod value of this  deviation will  be positive.  So,  for each of these

particular the training scenarios or the training cases, we will be getting some deviation

and then we find out what should be the average deviation and that particular average

deviation will be the fitness of the GA and as we discussed that for each of the GA string.

If we can find out the fitness information now we can use the operators like reproduction

crossover and mutation.  And, GA through a large number of iterations we will try to



actually  evolve  so,  that  particular  network  so  which  can  predict  the  input  output

relationship in a very accurate way.
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Now, if you see the reference like whatever we have discussed on genetic neural system

the same thing has been discussed in detail in the textbook of this particular course Soft

Computing: Fundamentals and Applications, written by me. So, this is the reference for

this genetic neural system.
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And, now to conclude or to summarize whatever we have discussed, we have discussed

the principle of the genetic neural system whose main purpose is to evolve a suitable

neural  network  which  can  predict  the  input-output  relationship  of  a  process  very

accurately. Now, the working principle we discussed in details and after that we have

solved one numerical example to make it more clear and I hope that you have understood

the working principle of genetic neural system and by solving the numerical example so,

this particular concept has become more clear.

Thank you.


