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Now, we are going to discuss on the topic Optimal Design of Neural Networks. Now, we

have seen that we can use a multi layered feed forward network to model input output

relationship, of an engine system, of an engine process, accurately both in the forward as

well as in the backward directions. But, this particular network does not have an inbuilt

optimization  tool.  Now, what  do  you  will  have  to  do  is  to  ensure  the  accuracy  in

prediction. So, we will have to use an optimizer along with this particular network in

order to train it.

Now, what he can do we can use some traditional tools for optimization, just to optimize

this particular network, like we can use steepest decent our algorithm. In the form of the

back propagation algorithm and we have already discussed so, this type of network is

very popularly known as the back propagation neural network. Now, on the other hand

we can also use some set of nature inspired optimization tools, like genetic algorithms,

particle  swarm  optimizations  and  others,  just  to  optimize  or  to  evolve  the  neural

networks, which will be able to predict the input output relationship, very accurately both

in the forward as well as reverse direction.

Now, here in this topic I am just going to discuss like how to evolve a multi layered feed

forward network, using the principal the genetic algorithm based principle of evolution.



(Refer Slide Time: 02:25)

So, if you see the topic which I am going to discuss let me repeat once again. We are

going to discuss the principle of evolution of neural networks using a nature inspired

optimization tool say genetic algorithm. Or, in other words we are going to optimize the

performance of this particular neural network using one nature inspired optimization tool

say genetic algorithm.

(Refer Slide Time: 02:56)

Now, if you see the combined genetic algorithm and neural networks. Now, this is very

popularly known as the Genetic Neural System and in short this is nothing, but the GNS.



Now,  the  purpose  of  developing  this  genetic  neural  system  is  to  optimize  the

performance of a neural network with the help of a genetic algorithm. Now, let us see

how to optimize the performance of a network using the principle of evolution of this

genetic algorithm.

(Refer Slide Time: 03:44)

Now, if you see the performance of a network it depends on actually a number of things.

For example, it  depends on the topology of this particular network, it depends on the

connecting weights;  that means, the connecting weight between the input and hidden

layer. And, that between the hidden and output layers, it depends on the bias values, it

depends on the coefficient of transfer function of the different layers.

 Now, supposing that I am just going to use a multi layered feed forward network to

model input output relationship of a process. And, let me take a very simple example

supposing that the process is having say 4 inputs. So, it is having 4 inputs and there are

say 3 outputs of this particular process and I want to model, its input output relationship

with the help of one multi layered feed forward network.

Now, if I concentrate on the input layer. So, there will be 4 neurons. So, these are the

neurons on the input layer, say I have got 4 inputs like I 1 I 2 I 3 and I 4 and there are 4

outputs so on the output layer. So, there will be actually your the 3 out 3 outputs so, that

is nothing, but O 1, O 2, and O 3.



Now, this is the input layer. So, this is nothing, but the input layer of this network at this

is  nothing,  but  the  output  layer  of  this  particular  the  network.  Now, the  number  of

neurons to be present on the input layer and that to be present on the output layer are

kept fixed to the number of inputs and the number of outputs of the process to be model

respectively; that means, your on the input layer. So, there will be 4 neurons; on the

output layer there will be actually 3 neurons.

Now, the topology or the architecture of this particular network depends on how many

hidden layers we put in between the input layer, and the output layer and how many

neurons which we are going to put on these particular  your the hidden layers.  Now,

actually  that  is  going  to  decide  what  should  be  the  topology  or  architecture  of  this

particular the network. Now, the performance of this particular network largely depends

on the topology of these particular  the network.  Now, here actually  we are going to

discuss two different approaches to develop the genetic neural system. 

Now, I am just going to concentrate for the time being on approach 1 and that is nothing,

but  genetic  algorithm  based  tuning  of  connecting  weights,  bias  values  and  other

parameters. That means, in approach 1 we are going to consider a network having known

or the fixed topology or the architecture. So, this is actually nothing, but a network of

fixed topology or architecture. Now, if you just keep the architecture or the topology of

the network fixed. Now, its performance depends on the connecting weights, it depends

on the bias values, it depends on the coefficient of transfer function and so on.

So, our aim in approach 1 is to determine the optimal values of this particular network

show that it can perform in the optimal sense. Now, before I go for the principle of that

particular the approach 1, I just want to discuss one fact from the biological adaptation.

Now, if you see the principle of biological adaptation.
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So, in biological adaptation actually there are two things; one is your the principle of

evolution and we have got the principle of learning. Now, this evolution and learning are

two important parameters in biological adaptation. Now, the same thing actually we are

going to copy it here in the artificial way. Now, before I copy it so, let us discuss what is

happening in biological adaptation.

 Now, if you concentrate on, so, this particular learning. Now, learning takes place during

once lifetime on the other hand the evolution takes place through a large number of

generation or a large number of iterations. So, this evolution and learning so, these two

parameters are working on two different scales timescales.

Now, if we concentrate on this particular the learning. Now, we go on learning. So, long

as  we  live  in  this  particular  world  and  we  try  to  collect  good  information,  good

knowledge, now this particular the good information and good knowledge we want to

pass  it  to  the  next  generation.  Now, if  we pass  it  to  the  next  generation,  there  is  a

possibility that is going to accelerate the rate of evolution, because the next generations

are going to get all the good information. So, there is a chance the rate of evolution is

going to increase.

Now, on the other hand if  you see,  the principle  of learning. So, during the learning

actually one spends a lot of time on carrying out the optimization; that means, for this

learning knowingly or unknowingly we use the principle of optimization. And, if you see



the optimization tool particularly the nature inspired optimization tool. So, in these tools

actually we use the principle of evolution. So, this particular evolution is going to help

learning and learning is also going to help your the evolution. So, they are helping each

other and through this particular mutual help, there is a chance. The rate of biological

adaptation is going to increase the same thing has been copied here so, in this particular

the genetic neural system.

 Now, what we do is we use some evaluation tool like say genetic algorithm say denoted

by GA-NN we use some learning tool for example, say it could be a neural network and

in this combined tool so, this particular GA and neural network. So, what we do is we try

to optimize  the  neural  network,  or we try to  improve the performance of the neural

network, and we try to actually design and develop. What is known as the combined, GA

neural network technique and that is nothing, but genetic neural system.

Now, there  are  many  applications  of  this  particular  the  genetic  neural  system.  For

example, say in the field of robotics, there are lot of applications like how to evolve. The

adaptive controller for an intelligent robot, how to evolve an adaptive controller for a

particular the motor used in robots. Now, so, the principle of evolution has been used in

robotics and this works based on actually the principle of genetic neural system, and a

new field of robotic research has started that is known as the evolutionary robotics.

Now, in evolutionary robotics the main aim is to evolve the suitable motion planner or

the adaptive controller instead of going for the direct design of this particular the adapt

direct  design of the controller  or the motion planner. Now, here actually  we use the

principle of evolution instead of going for the direct design. Now, we actually realize one

fact, that through this direct design many things we are unable to foresee beforehand.

And,  that  is  why  actually  we  will  have  to  take  the  principle  of  evolution  for  the

development of an efficient system.

Now, let me see how to use and how to develop this genetic neural system. Now, I have

already mentioned about this GA neural network and I have also discussed about these

back propagation neural network. Now, let me repeat in back propagation neural network

for optimizing we use the back propagation algorithm that is the BP algorithm. And, this

BP  algorithm  works  based  on  the  steepest  decent  algorithm,  this  we  have  already

discussed. Now, if I compare the performance of these particular your BPNN and your



the GA NN. Now, this BPNN works based on the steepest decent algorithm; so, there is a

chance of the algorithm for getting trapped in the local minima problem. And, the chance

of getting the local minima is much less in case of so, this particular the GA neural

network.

 Now, actually if you see the literature on genetic algorithm, we have got the different

versions of genetic algorithm. Now, those things actually I am not going to discuss in

details  in  this  particular  course,  but  this  is  available  in  the  text  book  used  for  this

particular course. Now, if you see the literature the genetic algorithm the first version of

genetic algorithm is nothing, but the binary coded genetic algorithm that is your BCGA.

Now, in BCGA actually what you do is all the variables we represent with the help of

some binary and binary is nothing, but a combination of 1’s and 0’s.

Now, here let me take a very simple example supposing that I am just going to optimize

a neural network. And, let me assume that there are say 20 variables in this particular the

network. So, if I want to optimize the performance of these particular the neural network.

So, what do you will have to do is I will have to find out the optimal values for each of

these particular the 20 variables. Now, the variables could be the connecting weights bias

values the coefficient of transfer function and all such things. Now, here if I is the binary

coded GA. Now, to represent each of these particular variables so, I will have to use a

number of bits let me assume that, I am going to use say 10 bits to represent each of

these particular your the variable.

 Now, so, if I just concentrate on a particular GA string there is a binary coded GA string,

it looks like this like your say 10 11 dot dot dot and the last term might be say 10. Now,

if there are 20 variables and if I use the 10 bits for each variable so, I will have 20

multiplied by 10; that means your 200 bits in one GA string. So, here I have got in fact,

200 bits. Now, out of 200 bits supposing that the first 10 bits are used to represent a

particular variable, the next 10 bits are used to represent another variable and so on.

 Now, the moment to use 10 bits now; that means, we are going to divide the range of

these particular variables into actually 2 raise to the power 10 minus 1, that is your 1024

minus 1, that is 1 0 2 3 equal divisions. Now, for 1 variable so, we have got the 1 0 2 3

equal divisions; that means, I have got say 1024 the numerical values on the range of this

particular the variable.



Similarly, on the second variable so, within the range I have got another 1024 numerical

values, the third I have got another 1024 numerical values at this will go on up to your

say 20th variable. Now; that means, if I see the total  number of combinations of the

numerical values, which have to be considered before the GA can decide the optimal

solution is nothing, but 1024 raise to the power your that 20.

So, this is actually a high number. So, 1024 raise to the power 20 is a high number; that

means, the GA will have to carry out some charge. For so, many combinations of the

input  variables  or  the  design  variables,  before  it  can  declare,  that  this  is  a  globally

optimal  solution.  So,  this  is  a  very difficult  task for  the binary  coded GA have this

problem, in genetic algorithm is known as actually the permutation problems. Now, if

there are large number of variables,  so that this binary coded GA actually can suffer

from, so this particular the permutation problem. 

Now, the point which I am just want to make it clear, that if I have got a very large

number of variables is better not to use this binary coded GA. And, in place of the binary

coded GA impact we can go for some sort of the real coded GA. Now, once again a

detailed discussion discussing on a real coded GA is beyond the scope of this particular

course, but this thing is available in details in the textbook for this course that is your sub

competing fundamentals and applications.

So, we are going to use say the real coded GA just to overcome. So, these particular the

permutation  problem,  but  here  for  simplicity  I  am just  going  to  discuss  this  binary

decoded GA only; that means,  how to use a binary coded GA to design or evolve a

suitable  neural  network.  So,  that  it  can  predict  the  input  output  relationship  very

accurately.
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Now, let us try to concentrate on approach 1, approach 1 we have already discussed and

now I am just going to discuss some numerical examples also after some time. And, let

me concentrate little bit on the principle of approach 2. Now, in approach 2 actually what

we do is we generally go for the genetic algorithm based tuning of the neural network

topology.  Now,  this  I  have  already  mentioned  that  the  topology  of  this  particular

network, or the architecture of this particular network, depends on the number of hidden

layers and the number of neurons you put under the hidden layer. 

Now, if I give this particular task to this genetic algorithm. So, the binary coded GA is

going to face one problem the problem is as follows. Now, the number of neurons on the

hidden layers and the number of hidden layers so, that has to be encoded inside that

particular your the GA string. That means, your so, this particular GA string is going to

encode like if I use the binary coded GA. So, this is nothing, but a particular GA string.

So, it is also going to encode the information related to the number of hidden layers,

which we are going to use and the number of neurons to be present in this particular the

layer.

And; that means, your so, from 1 GA string to the next GA string the number of hidden

layers and the number of neurons to be present in the hidden layer are going to vary; that

means, we are going to face a problem that is called the variable string length genetic

algorithm. Now, let me explain supposing that in the population of GA, we have got a



large number of solution and whose side is denoted by N, that is the population size, that

will see here I have got all such binary string say. So, these are all binary strings here.

Now, here if I consider that your this approach to whose aim is to optimize the topology

or architecture of the network.

So, there is a possibility that I will be getting one GA string might be it is having the

length say 100. So, the GA string may look like this. So, this is there are say 100 bits

here say 100 bits at the next GA string it may have say 120 bits. So, there could be

another GA string here, and which may have say 120 bits. Now, 1 GA string is having

100 bits another is having 120 bits.

Now, if I just go part the crossover operator, now for this particular binary coded GA. So,

we are going to face a lot of problem, because so, this particular GA string is having 100

bits and this particular GA string is having 120 bits. So, for the last 20 bits actually we

cannot easily do the crossover operation. So, we are going to face a lot of problem in

crossover particularly, if you use the binary coded GA.

Now, that is actually a problem related to the variable sting then genetic algorithm. Now,

there are some ways to overcome this particular problem and we have got a special type

of GA, that is called your that messy GA. The messy GA is another very popular GA,

where we consider the variable string length during the crossover operation. Now, this is

once again beyond the scope of this particular course. So, this messy GA actually I am

not going to discuss in details.
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Now, let us try to concentrate on these multi layered feed forward network. Now, as I

discussed several times like your. So, this network is having your say 3 layers, like your

the input layer, then hidden layer and the output layer. Now, this input layer is having M

neutrons, the hidden layer is having N neurons, and the output layer is having P neurons.

And, let me use the linear transfer function on the input layer the log sigmoid transfer

function on the hidden layer and tan sigmoid transfer function on the output layer.

Now, this particular network I want to optimize or this particular optimal network we

want to evolve with the help of a genetic algorithm. So, what you will have to do is. So,

all the design parameters, like the connecting weights between the input layer, and the

hidden layer, and the connecting weights between the hidden layer, and the output layer

we will have to optimize. We will have to optimize the coefficient of the log sigmoid

transfer function, the coefficient of tan sigmoid transfer function, and for simplicity I did

not consider any bias value here and if I consider the bias value for example, if I consider

the bias value. So, those buyers various also we will have to optimize.

And, the working principle of this multi layered feed forward network. I have already

discussed in details.  So, I am not going for that once again. Now, instead what I am

going to discuss how to represent this particular network inside 1 GA string.
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Now, before I  discuss  that  let  me recapitulate  that  error  in  prediction  of k-th output

neuron is nothing, but is your so, this particular expression that is E k is nothing, but half

T minus O square. Then, the total error in prediction considering all the output neurons is

nothing, but E that is summation k equals to 1 to P half T minus O square. So, by using

this we can find out what is the total error in prediction.

(Refer Slide Time: 27:25)

Now, here actually our aim is to represent. So, this network with the help of a binary

coded  GA string  and  we  are  going  to  evolve  or  we  are  going  to  optimize  so,  this



particular the network. Now, this is a particular GA string like the binary coded GA.

Now, the first few bits are going to represent what should be the connecting weight, that

is V 1 1. And, the last V connecting weight that is V MN is this then the W connecting

weights, W connecting weights, now to represent each of these connecting weights. So, I

will have to assign a few bits. 

Then to represent a one that is the coefficient of transfer function for the log sigmoid

transfer  function,  then a  2 is  the coefficient  of  transfer  function  for  the  tan  sigmoid

transfer function. So, we will have to assign a bits. Now, so, this particular GA string is

going  to  carry  information  of  the  whole  network  and  supposing  that  we  know  the

architecture.  And, this optimization we are doing for say the fixed architecture or the

fixed topology. Now, if concentrate on say E particular your the GA string. So, it is going

to carry the whole information of this particular, the network.

And, similarly in the population of genetic algorithm we have got a large number of

strings; that means a large number of neural networks. Now, if you see so, if this is the

population of GA string. So, the first GA string could be something like this, second one

could be something like this, then the last the nth one could be something like this. So,

each of these particular GA string is going to carry information of this particular the

network. 

And, then as we discussed the principle of genetic algorithm in short, that we will have

to find out what should be the fitness, for this particular GA string, what should be the

fitness for these particular GA string, the fitness for the nth GA string. And, once you

have  got  this  fitness  information.  Now, you can  use  the  operators  like  reproduction

crossover and mutation and through a large number of iteration the GA will try to find

out,  that  particular  network,  which  will  be  able  to  predict  actually  this  input  output

relationship very accurately.
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Now, how to define this particular the pit test? Now, to define the fitness actually what

we do is we use the concept of actually the batch mode of training. Now, the principle of

batch mode of training we have already discussed; that means, we pass a large number of

training scenarios denoted by capital L, and we consider all the outputs that is your the

capital P number of outputs, and we try to find out so, this average error after passing all

capital  L training  scenarios.  And,  this  is  nothing,  but the fitness  of the GA string is

denoted by f is nothing, but one divided by L multiplied by 1 divided by P summation

small l equals to 1 to capital L, summation small k equals 2 1 2 capital P half T l minus O

l square.

 Now, hear this O l is nothing, but the output of the k th neuron lying on the output layer

corresponding to the lth training scenario. Similarly, this T l is nothing, but the target

output  of the kth neuron lying on the output  layer, corresponding to the lth  training

scenario. Now, this is the way actually we calculate the fitness of a particular GA string.

And as I told that once you got the fitness information for the whole population; now we

are in a position to discuss how it can evolve that optimal network?

Now, here as GA works based on the principle of evolution, now there is a possibility

that  the  GA will  try  to  find  out  a  multiple  optimal  solutions  for  this  particular  the

network.  Now, if  you get  the  multiple  optimal  solutions.  Now, out  of  these  optimal

networks, now anyone actually we can we can use and if use this particular the network.
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So, this network will be able to predict the input output relationship very accurately.

Thank you.
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