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Now, we are going to discuss the working principle of another Neural Network, which is 

known as the Self-Organizing Map and in short, this is known as SOM. Now, this 

network was proposed by Kohonen around 1994/95 and according to his name, this 

network is also known as Kohonen network. Now, here we will see that in this particular 

network actually, we use the principle of unsupervised learning. So, the concept of that 

unsupervised learning, I am going to discuss in details. 

Now, before that let us mention that this self-organizing map can be used as a 

visualization technique or a dimensionality reduction technique and this is actually a 

topology preserving tool. Now, let me discuss a little bit, what do you mean by the 

visualization technique or dimensionality reduction technique and what do you mean by 

this topology preserving tool? Now, supposing that say I have got a data in the higher 

dimension, say in 10 dimensions, 20 dimensions, something like this.  



Now, this higher dimensional data can be represented something like this. So, this is 

actually the representation of the higher dimensional data, a large number of data and 

supposing that, so this data set is having say L dimensions, say 10 dimensions. 

Now, this data we, human-beings, we cannot visualize the reason is: we can visualize 

only up to three dimensions. Now, if the data are in more than 3 dimensions, say 4 

dimensions or so, we cannot visualize. So, for the purpose of visualization, this particular 

higher dimensional data are to be mapped to the lower dimension, say in 2 dimensions, 

say x and y. Now, if I want to map, these higher dimensional data to the lower dimension 

for the purpose of visualization, we cannot do actually 1 : 1 linear mapping. So, we will 

have to go for some sort of nonlinear mapping. 

Now, these higher dimensional data, we are going to map to the lower dimension for the 

purpose of visualization; that means, we want to see the relative position of the different 

points, which are there in the higher dimension, so these points, we are going to see in 

the lower dimension. Now, this technique is known as actually the visualization 

technique and or the dimensionality reduction technique.  

Now, if you see the literature there exist a large number of techniques for this 

dimensionality reduction. Now, these dimensionality reduction or visualization 

techniques can be classified into two groups. So, we have got the dimensionality 

reduction techniques, say DRTs and these techniques can be classified into two groups; 

one is called the distance preserving tools and we have got actually the topology 

preserving tool.  

Now, let us try to find out the difference between the distance preserving tool and 

topology preserving tool. So, by distance preserving tool, actually what do you mean? 

So, in the higher dimension, if I consider two points, one point is here, another point is 

here, so we can find out the Euclidean distance between them. Supposing that this is 

point i and this is your point j and this particular distance is nothing, but say d_ij.  

So, in distance preserving technique actually, we consider only the Euclidean distance 

between them, but we do not consider the relative position of the jth point with respect to 

the ith point. Whether the j-th point is towards the left or towards the right or towards the 

top or towards the bottom with respect to this i-th point that is not considered in the 

distance preserving tool. 



But, in topology preserving, actually we are going to maintain the topology; that means, 

in the higher dimension, if the j-th point is towards the top with respect to the i-th, in 

lower dimension, I am just going to map this point at this particular point. So, the relative 

position of these particular points, the two points, those things will be maintained in the 

lower dimension and that means, in topology preserving, not only the distance, but we 

try to maintain the relative position of a particular point, with respect to another point.  

Now, this Self-Organizing Map or SOM, that is actually a very efficient tool for the 

topology preserving. Now, actually, I should mention one thing that in human brain, we 

use this type of network very frequently and that is why, actually we can remember the 

topology. For example, sitting at a particular place, we can say, for example, starting 

from here, the road towards another city, so what is the direction, how does it go from 

one city to another city? 

So, we can imagine that we have got the topology preserving tool that is nothing, but 

self-organizing map in our brain. Now, this particular self-organizing map can also be 

used as a very efficient clustering tool. Now, in this course, we have already discussed 

the working principle of a few clustering tools like Fuzzy C-means clustering, entropy-

based clustering, in detail.  

Now, the similar type of problem can also be given to this self-organizing map and this 

self-organizing map is actually a very efficient clustering tool. And, as I mentioned that 

here, in this particular network, we use the principle of unsupervised and competitive 

learning. So, here, we do not use the concept of supervised learning, which we have 

already discussed.  

Now, let us see, how to use the concept of this unsupervised learning or the competitive 

learning in this particular self-organizing map. Now, if I see the main task of this 

particular network,  that is as follows. Supposing that, I have got some higher 

dimensional data, a large number of data point, for example, say I have got say one, this 

is the i-th one and this is the n-th one. 
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So, I have got say capital N number of data points, in the higher dimension, say these are 

in L dimensions L-D and these particular data will be passed through the input layer of 

this particular network and our aim is to map these higher dimensional data, that is the L 

dimensional data to the lower dimensional layer and that is nothing, but the competition 

layer for the purpose of visualization. So, what they do is, each of these particular N data 

points in the higher dimension, we are going to map it to the lower dimension for the 

purpose of visualization.  

So, although this input layer is in L dimensions, this particular competition layer or this 

is nothing, but the output layer should be either in say 2 dimensions or it could be say in 

3 dimensions, so, this could be your the 3 dimensions.  

Because we can visualize only up to 2 dimensions or say only up to 3 dimensions. So, 

these particular data points are to be mapped to the lower dimension and that is nothing, 

but the output layer or the competition layer. Now, we are going to discuss, in details, 

how can you do? So, this type of mapping from the higher dimension to the lower 

dimension by maintaining the topological information of these particular the data points. 

So, these things actually, we are going to discuss in much more details.  
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Now, the self-organizing map can also be called actually nonlinear generalization of 

principal component analysis. You might have heard about the Principal Component 

Analysis, that is nothing, but PCA algorithm, now this PCA is actually a very efficient 

tool for linear mapping, 1 : 1 mapping, but as we are doing the mapping from higher 

dimension to lower dimension, we cannot think of the linear mapping, so we will have to 

go for actually the non-linear mapping.  

And, in this non-linear mapping, we will not be getting this 1 : 1 mapping, there will be 

some in-accuracy and this in-accuracy, we will have to actually accommodate. Now, 

here if you see, the self-organizing map consists of two layers, for example, say we have 

got the input layer and the competition layer, this is nothing, but a two layer network. 

And, on this particular competition layer actually, there will be three basic operations 

and these operations, we are going to discuss it details.  

These are nothing, but the competition, then there will be cooperation and after that, 

there will be updating and through this competition cooperation and updating, actually 

this particular network is going to do the mapping from the higher dimension to the 

lower dimension. Now, let us see how does it work? So, let us first concentrate on the 

competition. Now, the purpose of this particular competition is to declare a winner. Now, 

let us see, how to declare and how to determine that particular the winner? 
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Now, this is the network; this is the network although I have shown it here. So, this is the 

input layer and the competition layer and I have already drawn this particular 

competition layer, but for the time being, let me assume that this particular competition 

layer is actually absent. So, this competition layer, actually these type of neurons are ( 

the way of shown it here) are absent for the time being, say.  

Now, what is our aim? Let me repeat we have got capital number of data. So, starting 

from 1 up to say capital N data points, we have on the input layer and these are in L 

dimensions, that is your L-D or say the higher dimension or any other dimension say. 

Now, these particular data points are to be mapped to the lower dimension. Now, let us 

see, how can we use the principle of this particular competition, now let us see the 

principle of this competition first. 
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Now, here, as I told that we are going to map a particular data points, say i-th data point 

lying on the input layer. Now, this particular i-th data point, supposing that I am 

considering here m dimensional point. So, if it is having m dimensions, so to represent 

this particular X_i, so, I will have to use x_i1, x_i2 up to x_im. So, I have got m number 

of numerical values, where i varies from 1, 2 up to capital N. So, this N is actually the 

total number of data points and each point is having say small m dimensions, now, how 

to carry out this particular competition. 

Now, to carry out the competition actually, what we do is, we generate, at random, some 

correcting weights between this input neuron i and the neuron j lying on the competition 

layer or this output layer. Now, what do you do is, we generate some connecting weight 

or synaptic weight that is denoted by W_ji. Now, if you want to generate so this 

particular W_ji, the first thing you will have to do is, you will have to decide its 

dimension. Now, let me assume that once again, this is having m dimensions, that means, 

the same dimensions of your this input data. 

Now, what you do is, so this W_ji to represent, you will have to use small m number of 

numerical values, that is nothing, but w_j1^i, w_j2^i and the last is your w_jm^i and j 

varies from 1, 2 up to N, that is nothing, but the total number of data points lying on the 

input layer.  



Now, once you have got these particular the W values, which are generated, now very 

easily I can find out what should be the Euclidean distance between your X_i and your 

this particular W_i and through this competition actually, what you are going to do is, we 

are trying to find out that the value of W, which is the closest to this particular X_i. 
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 Now, before I go for that particular calculation, I am just going to show you on the 

schematic view. Let us suppose, if the this is the i-th data point, which I am going to map 

to the lower dimension,  
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what I do? We actually generate all such W values. So, these are all connecting weights 

or the W values and these are actually your say W_j^i and these actually the connecting 

weights are generated at random using the random number generator, supposing that in 

the normalized scale, between say 0 to 1. Now, if this is the situation, then very easily, I 

can find out the Euclidean distance between the i-th data point lying on the input layer 

and capital N number of W values, each W is having small m dimension.  

Now, how to do this? So, let me explain that now as I mentioned that we are going to 

determine the Euclidean distance between your X_i and W_j^i and these particular 

Euclidean distance is nothing, but 2( )i
i jX W− . So, this is nothing, but the Euclidean 

distance between X_i and W_j^i. Now, corresponding to this particular i-th data point, 

we have generated how many W values?  Capital N number of W values. So, how many 

such Euclidean distances are possible we have got capital N number of Euclidean 

distance values and out of these capital N number of Euclidean distance values, what I 

do is, we try to find out which one is the closest, which one is having the minimum 

Euclidean distance values and that particular W which is having the minimum Euclidean 

distance is actually declared as the winning neuron or the winning connecting weight. 

So, mathematically, the winning neuron or the winning connecting weight is denoted by 

small n, and your the Euclidean distance between n and X_i is expressed like this, and so 

this n is consider as the winner; that means, it is having the minimum of these Euclidean 

distance values.  

Now, let me repeat, out of these Euclidean distance values, we try to locate that 

particular W_j^I, which is the closest to your X_i and which will give rise to the 

minimum Euclidean distance value and that particular W_j^i will be declared as the 

winner. Now, the purpose of this particular competition is actually to declare the winner 

of this competition, now if you just see on your plot. 
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So, here, once again corresponding to the i-th one, I am trying to find out the winner, 

supposing that, this particular connecting weight is nothing, but the winner. So, this 

indicates actually the winner neuron and that is denoted by your small n. So, small n is 

nothing, but the winning neuron, ok. Now, this is the winner, now surrounding this 

particular winner, there will be some other connecting weights.  

Now, for the time being, these particular neurons are not drawn, it is simply the 

connecting weights. So, these are simply the connecting weights, the neurons are not 

drawn now. So, surrounding this particular connecting weight, we have got a number of 

other connecting weights in this neighborhood, ok. So, let me repeat, the purpose of this 

particular competition is to declare that winner and once that particular winner we have 

got, now we can enter the cooperation stage.  
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The next stage is actually the cooperation and here, in this particular stage, we have 

already decided the winner through competition and surrounding that particular winner, 

there will be some excited connecting weights or excited neurons. So, let me just draw it 

here; now here, if you see this particular surrounding that is expressed with the help of  

mathematical expression, that is nothing, but the Gaussian distribution.  

Now, if I just draw this particular equation of one Gaussian distribution, it will look like 

this, so this is actually the Gaussian distribution and it is having your the standard 

deviation that is nothing but is your tσ  and it is having the mean. So, mean is nothing, 

but the property of these particular the winners. 

So, the mean properties are decided by the winners property, which have been declared 

the winner in that particular competition and there will be a Gaussian distribution, and  

the nature of the Gaussian distribution will be decided by the standard deviation, that is, 

tσ ; t means that t-th iteration. Now, if you see that h_j, n(x_i), so j is actually your 

excited neuron or the excited connecting weight and small n is nothing, but the winner.  

So, the neighborhood function between the j-th excited connecting weight and the winner 

small n at t-th iteration is nothing, but 
2
, ( )

, ( ) 2( ) exp( )
2

i

i

j n x
j n x

t

d
h t

σ
= − . Now, this particular d_j, 



n(x_i) is nothing, but the lateral distance between the winning neuron n and the excited 

neuron j. So, very easily, you can find out this particular Euclidean distance. 

And, once you have got these, now let us concentrate on these tσ . So, this σ  or the 

standard deviation, it is not kept fixed and it is actually a variable and it will vary from 

your iteration to iteration. Now, here we have written this particular 0 exp( )t
tσ σ
τ

= − . 

Now, this particular τ  is nothing, but pre defined number of maximum iterations, 

supposing that the τ  is kept equal to say 1000 or something like this, so τ  you say equal 

to 1000.  

 Now, so this is actually the fixed number, now as iteration proceeds, what will happen to 

this tσ ? So, as iteration proceeds, small t is going to increase now as small t increases, 

what will happen to this particular tσ . So, this particular tσ  is going to be reduced. And, 

if tσ  reduces, what will happen to the nature? Now, if you see this particular nature, if 

tσ reduces, I will be getting some sort of steeper distribution of these particular 

Gaussian.  

So, as iteration proceeds, there is a possibility that I will be getting say this type of 

steeper distribution and as iteration proceeds, I may get even steeper distribution 

corresponding to these, so this type of steeper distributions I will be getting. Now, if I 

take the plan view corresponding to the first the Gaussian. So, there is a possibility that 

this indicates the plan one, plan view for the original, as the iteration proceeds, so it is 

going to be reduced something like this and there is a possibility that this particular 

neighborhood is going to be reduced and will be getting actually a lot of interactions and 

through this particular interaction between the mean properties, that is a winner and you 

are the excited connecting weights or the excited neurons, there will be a chance of 

updating of both the things.   

Now, this is the almost similar to the situation like supposing that, say in one institute 

there are a large number of professors and around under each professor, a large number 

of students are working. Now, these students are all excited neurons or excited 

connecting weights and as if the professor is having the mean properties and professor is 

the winner. Now, there will be lot of interactions between the professor and the students 



and through this particular interaction, there is a possibility that the students are going to 

update their knowledge level and at the same time, the professor is also going to learn a 

few new things. 

 (Refer Slide Time: 25:58) 

 

So, through this particular interaction, both the professor as well as the students are 

going to learn and there will be some sort of updating. Now, the principle of updating is 

very simple. So, what we do is we try to update say 

, ( )( 1) ( ) ( ) ( )[ ( )]
i

i i i
j j j n x i jW t W t t h t X W tη+ = + − .  

And, this particular learning rate is going to vary in the range of say 0 to 1 and through 

this particular interaction, both the excited neuron as well as the winner are going to be 

updated, their connecting weights are going to be updated through a large number of 

iterations.  

So, corresponding to that particular i-th data point, if you remember, like on the input 

side we have got a number of neurons, so this is the first one, this is actually the i-th one 

and this is your N-th one. So, corresponding to this particular ith one, so actually, we are 

going to get the updated one and ultimately, corresponding to this, I will be getting 

finally, one connecting weight something like this, that is the modified winner. Now, you 

repeat the same process for the remaining N minus 1 data points lying on the input layer, 

so this is the input layer. So, lying on the input layer, you repeat the process inside a for 

loop of the computer program.  



 So, corresponding to each of these particular data points, in the higher dimension, I will 

be getting a actually one modified winner W. So, for each of the data points actually, I 

will be getting these particular modified connecting weights. Now, once you have got 

this type of modified connecting weights, now we will have to do the mapping. Now, let 

us see, how to do this particular mapping. 
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Now, let us try to actually understand the situation. So, on the input side or on the input 

layer, we have got capital N number of data points and for each of the data points, in the 

higher dimension, I have got the modified, winner connecting weights. So, I have got, 

how many such W values, once again I have got capital N number of W values.  

So, we have got capital N number of W values, so what I can do is, now this W is having 

the m dimensions. So, what you can do is, if I consider that m dimensional space its 

origin is, what I have got actually small m number of 0s. So, we have got small m 

number of 0s on the origin and what we can do is, we have got capital N number of  W 

values corresponding to capital N number of neurons lying on the input layer. 

Now, what you can do is, starting from the origin, I can find out the Euclidean distance 

of all the W values, all capital N number of W values. Then, how many Euclidean 

distance values, we are going to get? So, we are going to get actually capital N number 

of Euclidean distance values. Let me repeat, starting from the origin in m dimensions 

like I have got 0 0 0 small m number of 0 at the origin.  



So, I can find out, I can calculate the equilibrium distance of capital N number of W’s 

and that means, I can find out capital N number of Euclidean distance values and once I 

have got capital N number of the Euclidean distance values, we do the sorting in the 

ascending order. 

So, the W, which is the closest to the origin will be considered fist and we are going to 

do the sorting in the ascending order and once you have got that particular information of 

Euclidean distance in the ascending order, what you can do is, we can consider that 

particular w, which is the closest to the origin and its Euclidean distance we can consider 

as radius and we can draw one circular arc something like this, that is denoted by c_1. 

And, the next Euclidean distance value, I can use as your the radius, I can draw another 

circular arc. Similarly, I am drawing another circular arc and how many such circular 

arcs, I will have to draw? I will have to draw capital N number of circular arcs. So, I am 

just going to draw capital N number of circular arcs. Now, let me concentrate on the first 

circular arc, you take a point at random lying on the first circle so let we us consider this 

particular point.  

And, now, I know the Euclidean distance between these particular Ws, so this 

corresponds to one W, this corresponds to another W, the connecting weight. So, I know 

the Euclidean distance between this W and that particular W and its numerical value I 

can calculate and considering that as the radius, I can draw another circular arc and 

supposing that I am drawing this particular arc. 

Now, once you have got, so this is another point, now considering this at the center and 

considering your the next W, I can find out the Euclidean distance and these particular 

Euclidean distance we can consider as the radius and I can draw one circular arc here. 

So, I will be getting another intersection point, following the same procedure, I will be 

getting another intersection; another intersection; another intersection, and so on, and 

once you have got all such intersection points, those are nothing, but the points in two 

dimensions or the lower dimension. So, these higher dimensional data, now, we are in a 

position to map to the lower dimension like say two dimensions for the purpose of 

visualization. 

Now, if you just go back to your diagram, which we have considered for the self-

organizing map, now we will be able to explain these , like corresponding to these 



supposing that I have got only one winner. Similarly, corresponding to another data point 

might be another winner and modified winner, say corresponding to this might be 

another, corresponding to this might be another. So, capital N number of data points, 

lying on the input layer will be mapped to the lower dimension on the competition layer 

for the purpose of visualization. 

So, this is the way actually, from the higher dimension, we can do the mapping to the 

lower dimension for the purpose of visualization. So, now, we will be in a position to 

draw all such neurons here, and each neuron indicates a particular point lying on this 

input layer. So, I will be getting here capital N number of neurons and each neuron is 

going to represent a particular neuron in the higher dimensional input layer. Now, this is 

the way, actually it works. 
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Now, I can show one example like very simple example like this is actually one test 

function, that is called the Schaffer’s test function. So, this Schaffer’s test function, if 

you see the mathematical formulation, so this is the mathematical expression for 

Schaffer’s test function and here, you see 
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. So, this is actually the mathematical 

expression and here, you see i varies from 1 to 4; that means, this is in 5 dimensions.  



Now, these 5 dimensional data, we cannot visualize because we can visualize only up to 

3 dimensions. Now, what we do? We generate 1000 data points at random, lying on the 

surface of this particular test function and these 1000 data points are mapped to the 2 

dimensions for the purpose of visualization using the self-organizing map.  

So, in the higher dimensions, if there are 1000 data points in the lower dimension also, it 

will be getting 1000 data points and here, the topological information will be kept 

unaltered or intact. And, here, these particular data points are well-distributed, so there is 

an ease for visualization. So, very easily, we can visualize these data points and their 

relative positions or their topology, we can visualize very easily. 

Thank you. 


