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Now, we are going to solve one numerical example related to radial basis function 

network, and let us see, how can it model the input-output relationship of a process. 

Now, here, we are going to consider, in fact, a system having four inputs and one output 

only for simplicity. So, I am just going to show one radial basis network having, in fact, 

four inputs and one output. 
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So, this is the network. Now, if you see, there are four input is here say x_I1, x_I2, x_I3, 

x_I4. And, this is nothing but actually the input node and we have got only one output. 

And here on the output layer we are using the linear transfer function. And, on the 

hidden layer, we are using a radial basis function network, say inverse multi-quadratic 

function. So, inverse multi-quadratic function I am using as the transfer function in the 

hidden layer and we have got three neurons on the hidden layer. 

So, this H_I1 indicates the input of the first neuron lying in the hidden layer; H_O1 is the 

output of the first neuron lying on the hidden layer. H_I2 say input of the second neuron 

lying in the hidden layer; then H_I2 is the output of the second neuron lying on the 

hidden layer.  

Then, H_I3 is input of the hidden neuron the third neuron lying on the hidden layer; and 

H_O3 is the output of the third neuron lying on the hidden layer. Now, these outputs are 

multiplied by the connecting weights and those are summed up here as the input and 

using the linear transfer function, we get this particular output. Let us see, how to carry 

out this particular analysis and how to solve the numerical example. 
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Now, let me give the statement. There are three neurons on the hidden layer, which are 

assumed to have inverse multi-quadratic function of the form, 
2 2
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= =
+

, 

take 1σ , 2σ  and 3σ  for the first, second and third hidden neurons as 0.2, 3.0 and 4.0, 

respectively. Assume initial weights w_11 = 0.2, w_21 is 0.4, w_31 is 0.5.  

We use incremental training scheme with the help of a training scenario: x_I1 is 1.5, 

x_I2 is 2.0, x_I3 is 1.7, and x_I4 is 2.5. The target output is nothing but 0.14. We are 

going to use back-propagation algorithm with a learning rate η  equals to 0.2. And, we 

will have to update this w_11 and 1σ , and we are going to solve for one iteration.  
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Now, let us see how to solve it. Now, here we have some given values like x_I1 is 1.5, 

x_I2 is 2.0, x_I3 is 1.7, and x_I4 is 2.5. Now, as I discussed, we try to find out H_I1, that 

is nothing but the input of the first neuron lying in the hidden layer and it is the same as 

input of the second layer lying on the hidden layer and it is same as input of the third 

neuron lying on the hidden layer is nothing but 1.5+2.0+1.7 +2.5 = 7.7. 

Now, this 1 2 2
1

1
OH

x σ
=

+
. So, x is 7.7, 1σ  is 0.2. And, if you just insert these values 

and calculate, we are getting 0.129. Similarly, this 2 2 2
2

1
OH

x σ
=

+
. If you substitute the 

values for x and 2σ , and if you calculate, you will be getting 0.121. So, this is the way 

actually we can find out H_O1, H_O2. 
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And, 3 2 2
3

1
OH

x σ
=

+
; 1 divided by square root of 7.7 square plus 4.0 square that is 

nothing but 0.115. Then, we determine what should be the input of the first neuron lying 

on the output layer that is 1 1 11 2 21 03 31I O OO H w H w H w= × + × + × . And, if you substitute 

all such values the numerical values, and if we calculate, you will be getting 0.1317. 

And, here, on the output layer, we are using the linear transfer function. So, the output of 

the neuron the first neuron laying one the output layer is nothing but its input and that is 

nothing but 0.1317. So, we will be getting this particular output. 
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Now, based on this particular output, now we will have to find out this updated values, 

for the connecting weights and the update value for this particular the σ . Now, if you 

see by following the similar procedure, I can find out the updated value for this w_11 is 

nothing but w_11 previous plus delta w_11. Now, 11
11

Ew
w

η ∂
∆ = −

∂
. Now, this particular 

partial derivative using the chain rule of differentiation we can write down, so partial 

derivative of E with respect to O_O1 multiplied by the partial derivative of O_O1 with 

respect to O_I1 multiplied by the partial derivative of O_I1 with respect to W_11 ok. 

And, now we can find out all such things like here this partial derivative that particular 

partial derivative and this particular partial derivative, we can find out. 

And, if you just substitute the numerical values, I will be getting partial derivative of E 

with respect to w_11 is nothing but this, and once you got this particular thing by 

multiply -η , so I will be getting this change in w_11. 
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Now, if you carry out this calculation, we will be getting your 11w∆  is nothing but minus 

0.2 (0.2 is the value of the learning rate) multiplied by minus 0.00107. And, if you just 

multiply, you will be getting this as 11w∆ . Now, w_11 update is nothing but your the 

previous value plus the change in this. So, I can find out the updated value for this w_11. 

Now, by following the similar procedure, so I can find out the updated values for w_21, 

and the updated values for w_31. 
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And, once you have got this, so what you can do is, we can find out the updated value for 

this w_11 and other w’s. Now, let us see, how to determine the updated value for this 1σ . 

Now, the updated value for 1σ  is nothing but the previous value for 1 1σ σ+ ∆ . Now, this 

1
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σ
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. Now, partial derivative of E with respect to sigma_1 is nothing but partial 

derivative of E with respect to O_O1, partial derivative of O_O1 with respect to O_I1 

multiplied by partial derivative of O_I1 with respect to H_O1 multiplied by partial 

derivative of H_O1 with respect to your 1σ . 

Now, these particular derivatives very easily you can find out, this we have discussed 

several times. Now, let me concentrate on the last partial derivative that is partial 

derivative of H_O1 with respect to your 1σ , and how to determine this particular the 

partial derivative.  

Now, it is very simple. Now, this can be written as the partial derivative of this, this is 

nothing but H_O1. So, this particular expression is your H_O1 with respect to 1σ . So, 

this is nothing but your if I just try to find out partial derivative or with respect to 1σ  of 

this particular expression, so this is nothing but your x square plus 1σ  square raise to the 

power your minus half. 

So, if I just try to find out, how to find out, it is very simple. So, this is nothing but is 

your 2 2 3/2
1 1

1 ( ) 2
2

x σ σ−− + × ; that means, you are. So, this 2, 2 gets cancelled. So, I will be 

getting 2 2 3/2
1 1( )x σ σ−− + × . So, exactly the same thing which I have written it here, so 

very easily you can find out this particular the partial derivative. 

And, once you got all such things very easily you can find out this particular partial 

derivative. And, once you have got all such things, very easily you can find out this 

partial derivative of E with respect to 1σ . And, once you have got it, I can find out what 

should be your the change in 1σ . And, once you got change in 1σ , we can find out your 

what is 1σ  updated. 

Now, this is the way actually, we can update the connecting weights and this particular 

σ  value. And, this process will go on and go on through a large number of iterations, 



and ultimately, you will be getting a network. And, this particular network will be able to 

make the prediction very accurately. Now, this is actually the working principle of the 

radial basis function network. Now, if I compare this particular radial basis function 

network with the multilayered feed forward network. 

Now, in terms of accuracy like the both the networks are able to provide almost the same 

level of accuracy. But if I compare in terms of computational complexity, this radial 

basis function network is computationally faster compared to your multilayered feed 

forward network, and that is why, actually this radial basis function network has become 

very popular. And, this is very frequently used, in fact, to model input-output 

relationship of an adjunct process having say large number of inputs and outputs. 

Thank you. 


